Assuntos
Ciclopentanos/farmacologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Lisina/metabolismo , Proteína NEDD8/metabolismo , Pirimidinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinas/metabolismo , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Lisina/química , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional , Ubiquitinas/químicaRESUMO
Chronic lymphocytic leukemia (CLL) is characterized by a failure in the mechanisms of apoptosis that leads to an accumulation of mature B cells in peripheral blood, bone marrow, and lymphoid organs. The molecular basis of CLL remains unknown. Certain cytogenetic and molecular markers determine a bad prognosis in CLL. Fanconi anemia complementation (FANC) proteins have been related to chromosomal instability and alterations in the mechanisms of p53 activation, control of cell cycle, and apoptosis. We investigated the role of certain FANC proteins in CLL. Our data identified a group of patients with CLL with high expression of FANCA in peripheral B-CLL cells and we established its relationship with the deletion of 11q23 and a worse prognosis. When we investigated the molecular mechanisms of this bad prognosis, we observed a reduction in the expression of 2 p53 target genes, p21 and ∆Np73, in CLL primary cells transfected with FANCA. Functional studies demonstrated an impairment of p53 by FANCA. Moreover, we obtained evidence of a cooperation between FANCA and the NEDD8-interacting protein NUB1L in the destabilization of p53. For the first time, FANCA is reported as a bad prognosis marker by a mechanism other than its role in the Fanconi anemia-breast cancer DNA repair pathway.-Bravo-Navas, S., Yáñez, L., Romón, Í., Pipaón, C. Elevated FANCA expression determines a worse prognosis in chronic lymphocytic leukemia and interferes with p53 function.
Assuntos
Biomarcadores Tumorais/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Proteína Supressora de Tumor p53/metabolismo , Idoso , Apoptose , Biomarcadores Tumorais/genética , Deleção Cromossômica , Cromossomos Humanos Par 11 , Progressão da Doença , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Proteína Supressora de Tumor p53/genéticaRESUMO
While working with G418-resistant stably transfected cells, we realized the neomycin resistance (NeoR) gene, which encodes the aminoglycoside-3'-phosphotransferase-IIa [APH(3')-IIa], also confers resistance to the nucleoside analog fludarabine. Fludarabine is a cytostatic drug widely used in the treatment of hematologic and solid tumors, as well as in the conditioning of patients before transplantation of hematopoietic progenitors. We present evidence that NeoR-transfected cells do not incorporate fludarabine, thus avoiding DNA damage caused by the drug, evidenced by a lack of FANCD2 monoubiquitination and impaired apoptosis. A screening of other nucleoside analogs revealed that APH(3')-IIa only protects against ATP purine analogs. Moreover, APH(3')-IIa ATPase activity is inhibited by fludarabine monophosphate, suggesting that APH(3')-IIa blocks fludarabine incorporation into DNA by dephosphorylating its active fludarabine triphosphate form. Furthermore, overexpression of the catalytic subunit of the eukaryotic kinase PKA, which is structurally related to APHs, also provides resistance to fludarabine, anticipating its putative utility as a response marker to the drug. Our results preclude the use of Neo marker plasmids in the study of purine analogs and unveils a new resistance mechanism against these chemotherapeuticals.-Sánchez-Carrera, D., Bravo-Navas, S., Cabezón, E., Arechaga, I., Cabezas, M., Yáñez, L., Pipaón, C. Fludarabine resistance mediated by aminoglycoside-3'-phosphotransferase-IIa and the structurally related eukaryotic cAMP-dependent protein kinase.