Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Surg Pathol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764379

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) develops from 2 known precursor lesions: a majority (∼85%) develops from pancreatic intraepithelial neoplasia (PanIN), and a minority develops from intraductal papillary mucinous neoplasms (IPMNs). Clinical classification of PanIN and IPMN relies on a combination of low-resolution, 3-dimensional (D) imaging (computed tomography, CT), and high-resolution, 2D imaging (histology). The definitions of PanIN and IPMN currently rely heavily on size. IPMNs are defined as macroscopic: generally >1.0 cm and visible in CT, and PanINs are defined as microscopic: generally <0.5 cm and not identifiable in CT. As 2D evaluation fails to take into account 3D structures, we hypothesized that this classification would fail in evaluation of high-resolution, 3D images. To characterize the size and prevalence of PanINs in 3D, 47 thick slabs of pancreas were harvested from grossly normal areas of pancreatic resections, excluding samples from individuals with a diagnosis of an IPMN. All patients but one underwent preoperative CT scans. Through construction of cellular resolution 3D maps, we identified >1400 ductal precursor lesions that met the 2D histologic size criteria of PanINs. We show that, when 3D space is considered, 25 of these lesions can be digitally sectioned to meet the 2D histologic size criterion of IPMN. Re-evaluation of the preoperative CT images of individuals found to possess these large precursor lesions showed that nearly half are visible on imaging. These findings demonstrate that the clinical classification of PanIN and IPMN fails in evaluation of high-resolution, 3D images, emphasizing the need for re-evaluation of classification guidelines that place significant weight on 2D assessment of 3D structures.

2.
Nature ; 629(8012): 679-687, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693266

RESUMO

Pancreatic intraepithelial neoplasias (PanINs) are the most common precursors of pancreatic cancer, but their small size and inaccessibility in humans make them challenging to study1. Critically, the number, dimensions and connectivity of human PanINs remain largely unknown, precluding important insights into early cancer development. Here, we provide a microanatomical survey of human PanINs by analysing 46 large samples of grossly normal human pancreas with a machine-learning pipeline for quantitative 3D histological reconstruction at single-cell resolution. To elucidate genetic relationships between and within PanINs, we developed a workflow in which 3D modelling guides multi-region microdissection and targeted and whole-exome sequencing. From these samples, we calculated a mean burden of 13 PanINs per cm3 and extrapolated that the normal intact adult pancreas harbours hundreds of PanINs, almost all with oncogenic KRAS hotspot mutations. We found that most PanINs originate as independent clones with distinct somatic mutation profiles. Some spatially continuous PanINs were found to contain multiple KRAS mutations; computational and in situ analyses demonstrated that different KRAS mutations localize to distinct cell subpopulations within these neoplasms, indicating their polyclonal origins. The extensive multifocality and genetic heterogeneity of PanINs raises important questions about mechanisms that drive precancer initiation and confer differential progression risk in the human pancreas. This detailed 3D genomic mapping of molecular alterations in human PanINs provides an empirical foundation for early detection and rational interception of pancreatic cancer.


Assuntos
Heterogeneidade Genética , Genômica , Imageamento Tridimensional , Neoplasias Pancreáticas , Lesões Pré-Cancerosas , Análise de Célula Única , Adulto , Feminino , Humanos , Masculino , Células Clonais/metabolismo , Células Clonais/patologia , Sequenciamento do Exoma , Aprendizado de Máquina , Mutação , Pâncreas/anatomia & histologia , Pâncreas/citologia , Pâncreas/metabolismo , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Fluxo de Trabalho , Progressão da Doença , Detecção Precoce de Câncer , Oncogenes/genética
3.
World J Pediatr Congenit Heart Surg ; : 21501351241245115, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38780414

RESUMO

Partial heart transplantation is a new approach to deliver growing heart valve implants. Partial heart transplants differ from heart transplants because only the part of the heart containing the necessary heart valve is transplanted. This allows partial heart transplants to grow, similar to the valves in heart transplants. However, the transplant biology of partial heart transplantation remains unexplored. This is a critical barrier to progress of the field. Without knowledge about the specific transplant biology of partial heart transplantation, children with partial heart transplants are empirically treated like children with heart transplants because the valves in heart transplants are known to grow. In order to progress the field, an animal model for partial heart transplantation is necessary. Here, we contribute our surgical protocol for partial heart transplantation in growing piglets. All aspects of partial heart transplantation, including the donor procedure, the recipient procedure, and recipient perioperative care are described in detail. There are important nuances in the conduct of virtually all aspects of open heart surgery that differs in piglets from humans. Our surgical protocol, which is based on our experience with 34 piglets, will allow other investigators to leverage our experience to seek fundamental knowledge about the nature of partial heart transplants. This is significant because the partial heart transplant model in piglets is complex and very resource intensive.

4.
bioRxiv ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38106231

RESUMO

Methods for spatially resolved cellular profiling using thinly cut sections have enabled in-depth quantitative tissue mapping to study inter-sample and intra-sample differences in normal human anatomy and disease onset and progression. These methods often profile extremely limited regions, which may impact the evaluation of heterogeneity due to tissue sub-sampling. Here, we applied CODA, a deep learning-based tissue mapping platform, to reconstruct the three-dimensional (3D) microanatomy of grossly normal and cancer-containing human pancreas biospecimens obtained from individuals who underwent pancreatic resection. To compare inter- and intra-sample heterogeneity, we assessed bulk and spatially resolved tissue composition in a cohort of two-dimensional (2D) whole slide images (WSIs) and a cohort of thick slabs of pancreas tissue that were digitally reconstructed in 3D from serial sections. To demonstrate the marked under sampling of 2D assessments, we simulated the number of WSIs and tissue microarrays (TMAs) necessary to represent the compositional heterogeneity of 3D data within 10% error to reveal that tens of WSIs and hundreds of TMA cores are sometimes needed. We show that spatial correlation of different pancreatic structures decay significantly within a span of microns, demonstrating that 2D histological sections may not be representative of their neighboring tissues. In sum, we demonstrate that 3D assessments are necessary to accurately assess tissue composition in normal and abnormal specimens and in order to accurately determine neoplastic content. These results emphasize the importance of intra-sample heterogeneity in tissue mapping efforts.

5.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38105957

RESUMO

Pancreatic ductal adenocarcinoma is a rare but lethal cancer. Recent evidence reveals that pancreatic intraepithelial neoplasms (PanINs), the microscopic precursor lesions in the pancreatic ducts that can give rise to invasive pancreatic cancer, are significantly larger and more prevalent than previously believed. Better understanding of the growth law dynamics of PanINs may improve our ability to understand how a miniscule fraction of these lesions makes the transition to invasive cancer. Here, using artificial intelligence (AI)-based three-dimensional (3D) tissue mapping method, we measured the volumes of >1,000 PanIN and found that lesion size is distributed according to a power law with a fitted exponent of -1.7 over > 3 orders of magnitude. Our data also suggest that PanIN growth is not very sensitive to the pancreatic microenvironment or an individual's age, family history, and lifestyle, and is rather shaped by general growth behavior. We analyze several models of PanIN growth and fit the predicted size distributions to the observed data. The best fitting models suggest that both intraductal spread of PanIN lesions and fusing of multiple lesions into large, highly branched structures drive PanIN growth patterns. This work lays the groundwork for future mathematical modeling efforts integrating PanIN incidence, morphology, genomic, and transcriptomic features to understand pancreas tumorigenesis, and demonstrates the utility of combining experimental measurement of human tissues with dynamic modeling for understanding cancer tumorigenesis.

6.
bioRxiv ; 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36747709

RESUMO

Pancreatic intraepithelial neoplasia (PanIN) is a precursor to pancreatic cancer and represents a critical opportunity for cancer interception. However, the number, size, shape, and connectivity of PanINs in human pancreatic tissue samples are largely unknown. In this study, we quantitatively assessed human PanINs using CODA, a novel machine-learning pipeline for 3D image analysis that generates quantifiable models of large pieces of human pancreas with single-cell resolution. Using a cohort of 38 large slabs of grossly normal human pancreas from surgical resection specimens, we identified striking multifocality of PanINs, with a mean burden of 13 spatially separate PanINs per cm3 of sampled tissue. Extrapolating this burden to the entire pancreas suggested a median of approximately 1000 PanINs in an entire pancreas. In order to better understand the clonal relationships within and between PanINs, we developed a pipeline for CODA-guided multi-region genomic analysis of PanINs, including targeted and whole exome sequencing. Multi-region assessment of 37 PanINs from eight additional human pancreatic tissue slabs revealed that almost all PanINs contained hotspot mutations in the oncogene KRAS, but no gene other than KRAS was altered in more than 20% of the analyzed PanINs. PanINs contained a mean of 13 somatic mutations per region when analyzed by whole exome sequencing. The majority of analyzed PanINs originated from independent clonal events, with distinct somatic mutation profiles between PanINs in the same tissue slab. A subset of the analyzed PanINs contained multiple KRAS mutations, suggesting a polyclonal origin even in PanINs that are contiguous by rigorous 3D assessment. This study leverages a novel 3D genomic mapping approach to describe, for the first time, the spatial and genetic multifocality of human PanINs, providing important insights into the initiation and progression of pancreatic neoplasia.

7.
Med ; 4(2): 75-91, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36773599

RESUMO

Pancreatic cancer is currently the third leading cause of cancer death in the United States. The clinical hallmarks of this disease include abdominal pain that radiates to the back, the presence of a hypoenhancing intrapancreatic lesion on imaging, and widespread liver metastases. Technologies such as tissue clearing and three-dimensional (3D) reconstruction of digitized serially sectioned hematoxylin and eosin-stained slides can be used to visualize large (up to 2- to 3-centimeter cube) tissues at cellular resolution. When applied to human pancreatic cancers, these 3D visualization techniques have provided novel insights into the basis of a number of the clinical characteristics of this disease. Here, we describe the clinical features of pancreatic cancer, review techniques for clearing and the 3D reconstruction of digitized microscope slides, and provide examples that illustrate how 3D visualization of human pancreatic cancer at the microscopic level has revealed features not apparent in 2D microscopy and, in so doing, has closed the gap between bench and bedside. Compared with animal models and 2D microscopy, studies of human tissues in 3D can reveal the difference between what can happen and what does happen in human cancers.


Assuntos
Imageamento Tridimensional , Neoplasias Pancreáticas , Animais , Humanos , Imageamento Tridimensional/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Microscopia , Técnicas Histológicas
8.
Histopathology ; 82(3): 504-506, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36371607

RESUMO

Using CODA, a technique for three-dimensional reconstruction of large tissues, Kiemen et al. report observation of a microscopic focus of pancreatic cancer found in the vasculature of grossly normal human pancreas tissue resected adjacent to a large tumour. They use TP53 and SMAD4 staining to relate the small focus to the primary tumour. This report describes a represents a probable case of intraparenchymal metastasis of pancreatic cancer, revealing a probable cause of local recurrence.


Assuntos
Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Pâncreas/patologia , Recidiva Local de Neoplasia/patologia , Neoplasias Pancreáticas
9.
Nat Methods ; 19(11): 1490-1499, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36280719

RESUMO

A central challenge in biology is obtaining high-content, high-resolution information while analyzing tissue samples at volumes relevant to disease progression. We address this here with CODA, a method to reconstruct exceptionally large (up to multicentimeter cubed) tissues at subcellular resolution using serially sectioned hematoxylin and eosin-stained tissue sections. Here we demonstrate CODA's ability to reconstruct three-dimensional (3D) distinct microanatomical structures in pancreas, skin, lung and liver tissues. CODA allows creation of readily quantifiable tissue volumes amenable to biological research. As a testbed, we assess the microanatomy of the human pancreas during tumorigenesis within the branching pancreatic ductal system, labeling ten distinct structures to examine heterogeneity and structural transformation during neoplastic progression. We show that pancreatic precancerous lesions develop into distinct 3D morphological phenotypes and that pancreatic cancer tends to spread far from the bulk tumor along collagen fibers that are highly aligned to the 3D curves of ductal, lobular, vascular and neural structures. Thus, CODA establishes a means to transform broadly the structural study of human diseases through exploration of exhaustively labeled 3D microarchitecture.


Assuntos
Imageamento Tridimensional , Neoplasias Pancreáticas , Humanos , Imageamento Tridimensional/métodos , Neoplasias Pancreáticas/patologia , Pâncreas/patologia
10.
mBio ; 12(4): e0097421, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34253053

RESUMO

In the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males than in females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8 to 10 weeks of age) were inoculated intranasally with 105 50% tissue culture infective dose (TCID50) of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developed more extensive pneumonia as noted on chest computed tomography, and recovered more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including interferon-ß (IFN-ß) and tumor necrosis factor-α (TNF-α), were comparable between the sexes. However, during the recovery phase of infection, females mounted 2-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole-inactivated SARS-CoV-2 and mutant S-RBDs as well as virus-neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2-associated sex differences seen in the human population. IMPORTANCE Men experience more severe outcomes from coronavirus disease 2019 (COVID-19) than women. Golden Syrian hamsters were used to explore sex differences in the pathogenesis of a human isolate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After inoculation, male hamsters experienced greater sickness, developed more severe lung pathology, and recovered more slowly than females. Sex differences in disease could not be reversed by estradiol treatment in males and were not explained by either virus replication kinetics or the concentrations of inflammatory cytokines in the lungs. During the recovery period, antiviral antibody responses in the respiratory tract and plasma, including to newly emerging SARS-CoV-2 variants, were greater in female than in male hamsters. Greater lung pathology during the acute phase combined with lower antiviral antibody responses during the recovery phase of infection in males than in females illustrate the utility of golden Syrian hamsters as a model to explore sex differences in the pathogenesis of SARS-CoV-2 and vaccine-induced immunity and protection.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/imunologia , Pulmão/patologia , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Animais , Formação de Anticorpos/imunologia , Cricetinae , Modelos Animais de Doenças , Estradiol/farmacologia , Feminino , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Interferon beta/análise , Pulmão/diagnóstico por imagem , Pulmão/virologia , Masculino , Fatores Sexuais , Glicoproteína da Espícula de Coronavírus/imunologia , Fator de Necrose Tumoral alfa/análise , Carga Viral
11.
Gut ; 70(5): 928-939, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33028669

RESUMO

OBJECTIVE: Intraductal papillary mucinous neoplasms (IPMNs) are non-invasive precursor lesions that can progress to invasive pancreatic cancer and are classified as low-grade or high-grade based on the morphology of the neoplastic epithelium. We aimed to compare genetic alterations in low-grade and high-grade regions of the same IPMN in order to identify molecular alterations underlying neoplastic progression. DESIGN: We performed multiregion whole exome sequencing on tissue samples from 17 IPMNs with both low-grade and high-grade dysplasia (76 IPMN regions, including 49 from low-grade dysplasia and 27 from high-grade dysplasia). We reconstructed the phylogeny for each case, and we assessed mutations in a novel driver gene in an independent cohort of 63 IPMN cyst fluid samples. RESULTS: Our multiregion whole exome sequencing identified KLF4, a previously unreported genetic driver of IPMN tumorigenesis, with hotspot mutations in one of two codons identified in >50% of the analyzed IPMNs. Mutations in KLF4 were significantly more prevalent in low-grade regions in our sequenced cases. Phylogenetic analyses of whole exome sequencing data demonstrated diverse patterns of IPMN initiation and progression. Hotspot mutations in KLF4 were also identified in an independent cohort of IPMN cyst fluid samples, again with a significantly higher prevalence in low-grade IPMNs. CONCLUSION: Hotspot mutations in KLF4 occur at high prevalence in IPMNs. Unique among pancreatic driver genes, KLF4 mutations are enriched in low-grade IPMNs. These data highlight distinct molecular features of low-grade and high-grade dysplasia and suggest diverse pathways to high-grade dysplasia via the IPMN pathway.


Assuntos
Adenocarcinoma Mucinoso/genética , Carcinoma Papilar/genética , Sequenciamento do Exoma , Neoplasias Intraductais Pancreáticas/genética , Adenocarcinoma Mucinoso/patologia , Biomarcadores Tumorais/genética , Carcinoma Papilar/patologia , Humanos , Fator 4 Semelhante a Kruppel/genética , Mutação , Gradação de Tumores , Neoplasias Intraductais Pancreáticas/patologia , Estudos Retrospectivos
12.
Mod Pathol ; 33(10): 2026-2034, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32457408

RESUMO

Neoadjuvant chemotherapy (NAC) is often the treatment of choice for borderline resectable and locally advanced invasive pancreatic ductal adenocarcinoma (PDAC); however, most cancers only partially respond to therapy. We hypothesized that the location of residual neoplastic cells in resected specimens following NAC could provide a clue as to the mechanisms of resistance. PDAC cells invade the stroma but can also invade back into and spread via the pancreatic ducts, which has been referred to as "cancerization of ducts" (COD). We compared the responsiveness to chemotherapy between PDAC cells in the stroma and PDAC cells in the duct. Pancreatic resections from a total of 174 PDAC patients (NAC, n = 97; immediate surgery, n = 77) were reviewed. On hematoxylin and eosin sections, COD was identified at the same prevalence in both groups (NAC: 50/97 cases, 52%; immediate surgery: 39/77 cases, 51%; p = 0.879, Fisher's exact test). However, using quantitative image analysis of CK19 immunohistochemistry, we found that the proportion of cancer cells that were intraductal was significantly different between the NAC and immediate surgery groups (median; 12.7% vs. 1.99%, p < 0.0001, Mann-Whitney U test). This proportion was highest in patients with marked therapy responses (36.2%) compared with patients with moderate or poor responses (7.21 & 7.91%). In summary, our data suggest that intraductal components in PDAC are less responsive to chemotherapy than the remainder of the tumor, which could have important implications for therapeutic resistance.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimioterapia Adjuvante , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Estudos Retrospectivos , Resultado do Tratamento , Neoplasias Pancreáticas
13.
Mod Pathol ; 33(4): 639-647, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31700162

RESUMO

Venous invasion is three times more common in pancreatic cancer than it is in other major cancers of the gastrointestinal tract, and venous invasion may explain why pancreatic cancer is so deadly. To characterize the patterns of venous invasion in pancreatic cancer, 52 thick slabs (up to 5 mm) of tissue were harvested from 52 surgically resected human ductal adenocarcinomas, cleared with a modified iDISCO method, and labeled with fluorescent-conjugated antibodies to cytokeratin 19, desmin, CD31, p53 and/or e-cadherin. Labeled three-dimensional (3D) pancreas cancer tissues were visualized with confocal laser scanning or light sheet microscopy. Multiple foci of venous and even arterial invasion were visualized. Venous invasion was detected more often in 3D (88%, 30/34 cases) than in conventional 2D slide evaluation (75%, 25/34 cases, P < 0.001). 3D visualization revealed pancreatic cancer cells crossing the walls of veins at multiple points, often at points where preexisting capillary structures bridge the blood vessels. The neoplastic cells often retained a ductal morphology (cohesive cells forming tubes) as they progressed from a stromal to intravenous location. Although immunolabeling with antibodies to e-cadherin revealed focal loss of expression at the leading edges of the cancers, the neoplastic cells within veins expressed e-cadherin and formed well-oriented glands. We conclude that venous invasion is almost universal in pancreatic cancer, suggesting that even surgically resectable PDAC has access to the venous spaces and thus the ability to disseminate widely. Furthermore, we observe that sustained epithelial-mesenchymal transition is not required for venous invasion in pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático/patologia , Transição Epitelial-Mesenquimal , Imageamento Tridimensional , Microscopia Confocal , Neoplasias Pancreáticas/patologia , Veias/patologia , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/análise , Baltimore , Biomarcadores Tumorais/análise , Caderinas/análise , Carcinoma Ductal Pancreático/química , Carcinoma Ductal Pancreático/cirurgia , Desmina/análise , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Alemanha , Humanos , Queratina-19/análise , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias Pancreáticas/química , Neoplasias Pancreáticas/cirurgia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Proteína Supressora de Tumor p53/análise , Veias/química
14.
Gastroenterology ; 157(4): 1123-1137.e22, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31175866

RESUMO

BACKGROUND & AIMS: Intraductal papillary mucinous neoplasms (IPMNs) are lesions that can progress to invasive pancreatic cancer and constitute an important system for studies of pancreatic tumorigenesis. We performed comprehensive genomic analyses of entire IPMNs to determine the diversity of somatic mutations in genes that promote tumorigenesis. METHODS: We microdissected neoplastic tissues from 6-24 regions each of 20 resected IPMNs, resulting in 227 neoplastic samples that were analyzed by capture-based targeted sequencing. Somatic mutations in genes associated with pancreatic tumorigenesis were assessed across entire IPMN lesions, and the resulting data were supported by evolutionary modeling, whole-exome sequencing, and in situ detection of mutations. RESULTS: We found a high prevalence of heterogeneity among mutations in IPMNs. Heterogeneity in mutations in KRAS and GNAS was significantly more prevalent in IPMNs with low-grade dysplasia than in IPMNs with high-grade dysplasia (P < .02). Whole-exome sequencing confirmed that IPMNs contained multiple independent clones, each with distinct mutations, as originally indicated by targeted sequencing and evolutionary modeling. We also found evidence for convergent evolution of mutations in RNF43 and TP53, which are acquired during later stages of tumorigenesis. CONCLUSIONS: In an analysis of the heterogeneity of mutations throughout IPMNs, we found that early-stage IPMNs contain multiple independent clones, each with distinct mutations, indicating their polyclonal origin. These findings challenge the model in which pancreatic neoplasms arise from a single clone. Increasing our understanding of the mechanisms of IPMN polyclonality could lead to strategies to identify patients at increased risk for pancreatic cancer.


Assuntos
Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/genética , Mutação , Neoplasias Intraductais Pancreáticas/genética , Neoplasias Pancreáticas/genética , Idoso , Idoso de 80 Anos ou mais , Transformação Celular Neoplásica/patologia , Cromograninas/genética , Evolução Clonal , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Evolução Molecular , Feminino , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Estadiamento de Neoplasias , Proteínas Oncogênicas/genética , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Pancreáticas/patologia , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/genética , Estudos Retrospectivos , Ubiquitina-Proteína Ligases
15.
Am J Vet Res ; 74(1): 122-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23270356

RESUMO

OBJECTIVE: To identify matrix metalloproteinase (MMP)-2 and -9 in CSF from dogs with intracranial tumors. SAMPLE: CSF from 55 dogs with intracranial tumors and 37 control dogs. PROCEDURES: Latent and active MMP-2 and -9 were identified by use of gelatin zymography. The presence of MMPs in the CSF of dogs with intracranial tumors was compared with control dogs that were clinically normal and with dogs that had idiopathic or cryptogenic epilepsy or peripheral vestibular disease. Relationships between MMP-9 and CSF cell counts and protein were also investigated. RESULTS: Latent MMP-2 was found in CSF samples from all dogs, although active MMP-2 was not detected in any sample. Latent MMP-9 was detected in a subset of dogs with histologically documented intracranial tumors, including meningiomas (2/10), gliomas (3/10), pituitary tumors (1/2), choroid plexus tumors (5/6), and lymphoma (4/4), but was not detected in any control samples. Dogs with tumors were significantly more likely than those without to have detectable MMP-9 in the CSF, and the presence of MMP-9 was associated with higher CSF nucleated cell counts and protein concentration. CONCLUSIONS AND CLINICAL RELEVANCE: Latent MMP-9 was detected in most dogs with choroid plexus tumors or lymphoma but in a smaller percentage of dogs with meningiomas, gliomas, or pituitary tumors. Detection of MMP in CSF may prove useful as a marker of intracranial neoplasia or possibly to monitor response of tumors to therapeutic intervention.


Assuntos
Neoplasias Encefálicas/veterinária , Doenças do Cão/enzimologia , Metaloproteinase 2 da Matriz/líquido cefalorraquidiano , Metaloproteinase 9 da Matriz/líquido cefalorraquidiano , Animais , Neoplasias Encefálicas/líquido cefalorraquidiano , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Doenças do Cão/líquido cefalorraquidiano , Doenças do Cão/patologia , Cães , Eletroforese em Gel de Poliacrilamida/veterinária , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA