Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Oncol ; 18(4): 850-865, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37078535

RESUMO

Fibrillar collagen deposition, stiffness and downstream signalling support the development of leiomyomas (LMs), common benign mesenchymal tumours of the uterus, and are associated with aggressiveness in multiple carcinomas. Compared with epithelial carcinomas, however, the impact of fibrillar collagens on malignant mesenchymal tumours, including uterine leiomyosarcoma (uLMS), remains elusive. In this study, we analyse the network morphology and density of fibrillar collagens combined with the gene expression within uLMS, LM and normal myometrium (MM). We find that, in contrast to LM, uLMS tumours present low collagen density and increased expression of collagen-remodelling genes, features associated with tumour aggressiveness. Using collagen-based 3D matrices, we show that matrix metalloproteinase-14 (MMP14), a central protein with collagen-remodelling functions that is particularly overexpressed in uLMS, supports uLMS cell proliferation. In addition, we find that, unlike MM and LM cells, uLMS proliferation and migration are less sensitive to changes in collagen substrate stiffness. We demonstrate that uLMS cell growth in low-stiffness substrates is sustained by an enhanced basal yes-associated protein 1 (YAP) activity. Altogether, our results indicate that uLMS cells acquire increased collagen remodelling capabilities and are adapted to grow and migrate in low collagen and soft microenvironments. These results further suggest that matrix remodelling and YAP are potential therapeutic targets for this deadly disease.


Assuntos
Carcinoma , Leiomiossarcoma , Neoplasias Uterinas , Feminino , Humanos , Leiomiossarcoma/genética , Leiomiossarcoma/tratamento farmacológico , Leiomiossarcoma/patologia , Metaloproteinase 14 da Matriz , Neoplasias Uterinas/genética , Neoplasias Uterinas/patologia , Colágeno/uso terapêutico , Colágenos Fibrilares/uso terapêutico , Microambiente Tumoral
2.
Nat Commun ; 14(1): 2561, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142601

RESUMO

Xeroderma pigmentosum (XP) is a genetic disorder caused by mutations in genes of the Nucleotide Excision Repair (NER) pathway (groups A-G) or in Translesion Synthesis DNA polymerase η (V). XP is associated with an increased skin cancer risk, reaching, for some groups, several thousand-fold compared to the general population. Here, we analyze 38 skin cancer genomes from five XP groups. We find that the activity of NER determines heterogeneity of the mutation rates across skin cancer genomes and that transcription-coupled NER extends beyond the gene boundaries reducing the intergenic mutation rate. Mutational profile in XP-V tumors and experiments with POLH knockout cell line reveal the role of polymerase η in the error-free bypass of (i) rare TpG and TpA DNA lesions, (ii) 3' nucleotides in pyrimidine dimers, and (iii) TpT photodimers. Our study unravels the genetic basis of skin cancer risk in XP and provides insights into the mechanisms reducing UV-induced mutagenesis in the general population.


Assuntos
Neoplasias Cutâneas , Xeroderma Pigmentoso , Humanos , Xeroderma Pigmentoso/patologia , Raios Ultravioleta/efeitos adversos , Reparo do DNA/genética , Mutação , Neoplasias Cutâneas/genética , Genômica
3.
Mol Cell ; 43(4): 649-62, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21855803

RESUMO

Posttranslational modification of PCNA by ubiquitin plays an important role in coordinating the processes of DNA damage tolerance during DNA replication. The monoubiquitination of PCNA was shown to facilitate the switch between the replicative DNA polymerase with the low-fidelity polymerase eta (η) to bypass UV-induced DNA lesions during replication. Here, we show that in response to oxidative stress, PCNA becomes transiently monoubiquitinated in an S phase- and USP1-independent manner. Moreover, Polη interacts with mUb-PCNA at sites of oxidative DNA damage via its PCNA-binding and ubiquitin-binding motifs. Strikingly, while functional base excision repair is not required for this modification of PCNA or Polη recruitment to chromatin, the presence of hMsh2-hMsh6 is indispensable. Our findings highlight an alternative pathway in response to oxidative DNA damage that may coordinate the removal of oxidatively induced clustered DNA lesions and could explain the high levels of oxidized DNA lesions in MSH2-deficient cells.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA/fisiologia , Proteína 2 Homóloga a MutS/fisiologia , Estresse Oxidativo , Antígeno Nuclear de Célula em Proliferação/fisiologia , Proteínas de Arabidopsis , Linhagem Celular , Cromatina/metabolismo , DNA Polimerase beta/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Endopeptidases/metabolismo , Humanos , Proteína 2 Homóloga a MutS/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteases Específicas de Ubiquitina , Ubiquitinação , Proteína 1 Complementadora Cruzada de Reparo de Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA