Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 17574, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514854

RESUMO

We describe here the results from the testing of a small molecule first-in-class apolipoprotein E4 (ApoE4)-targeted sirtuin1 (SirT1) enhancer, A03, that increases the levels of the neuroprotective enzyme SirT1 while not affecting levels of neurotoxic sirtuin 2 (SirT2) in vitro in ApoE4-transfected cells. A03 was identified by high-throughput screening (HTS) and found to be orally bioavailable and brain penetrant. In vivo, A03 treatment increased SirT1 levels in the hippocampus of 5XFAD-ApoE4 (E4FAD) Alzheimer's disease (AD) model mice and elicited cognitive improvement while inducing no observed toxicity. We were able to resolve the enantiomers of A03 and show using in vitro models that the L-enantiomer was more potent than the corresponding D-enantiomer in increasing SirT1 levels. ApoE4 expression has been shown to decrease the level of the NAD-dependent deacetylase and major longevity determinant SirT1 in brain tissue and serum of AD patients as compared to normal controls. A deficiency in SirT1 level has been recently implicated in increased tau acetylation, a dominant post-translational modification and key pathological event in AD and tauopathies. Therefore, as a novel approach to therapeutic development for AD, we targeted identification of compounds that enhance and normalize brain SirT1 levels.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Antiparkinsonianos/farmacologia , Apolipoproteína E4/metabolismo , Hipocampo/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Sirtuína 1/metabolismo , Sirtuína 2/metabolismo , Animais , Antiparkinsonianos/uso terapêutico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Hipocampo/metabolismo , Camundongos , Camundongos Transgênicos , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
2.
Mol Cell Neurosci ; 83: 83-91, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28720530

RESUMO

The apolipoprotein E ε4 allele is the single most important genetic risk factor associated with Alzheimer's disease (AD). Tau phosphorylation and hyperphosphorylation is an underlying feature of AD and is regulated by specific kinases and phosphatases. Among phosphatases, protein phosphatase 2A (PP2A) is the principal tau dephosphorylating enzyme in the brain. Several abnormalities of PP2A have been reported in AD, including among others decreased protein levels of PP2A, decreased mRNA and protein levels of the catalytic subunit PP2AC and variable regulatory B subunits and reduced methylation of the catalytic subunit, all of which results in disruption of the PP2A phosphatase activity. In earlier studies we described a novel mechanism for ApoE as a transcription factor that binds regions of double-stranded DNA with high affinity, including the promoter regions of ~3000 different genes. The list of genes also included PPP2R5E (B56ε), a regulatory B' subunit of protein phosphatase 2A. Using a combination of A172 human glioblastoma cells, ApoE3/4 and ApoE-/- NSC and human postmortem tissue, we now demonstrate that ApoE not only binds to the PPP2R5E promoter but also triggers a significant reduction in PP2A activity by two mechanisms: 1) ApoE transcriptionally represses PPP2R5E and reduces protein expression, and 2) ApoE triggers demethylation of the catalytic subunit (PP2AC) of PP2A, resulting in the disruption of the PPP2R5E-PP2AC complex. Our results indicated a significant down-regulation of PPP2R5E gene expression and reduction in PP2A activity by ApoE4 compared with ApoE3. This may also explain an elevated Tau phosphorylation in AD human brains that featured at least one ApoE4 allele. Thus, our present work links ApoE and PPP2R5E expression to a reduction in the PP2A catalytic activity that has implications for Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Apolipoproteínas E/metabolismo , Proteína Fosfatase 2/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Humanos , Metilação , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Fosfatase 2/genética , Processamento de Proteína Pós-Traducional
3.
FASEB J ; 31(1): 148-160, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27677546

RESUMO

Monocyte/macrophages of patients with mild cognitive impairment (MCI) and Alzheimer disease (AD) are defective in phagocytosis and degradation amyloid ß1-42 (Aß1-42), but are improved by ω-3 fatty acids (ω-3s). The hypothesis of this study was that active Aß1-42 phagocytosis by macrophages prevents brain amyloidosis and thus maintains cognition. We studied the effects of self-supplementation with a drink with ω-3s, antioxidants, and resveratrol on Mini-Mental State Examination (MMSE) scores, macrophage M1M2 phenotype [the ratio of inflammatory cluster of differentiation (CD)54+CD80 and proresolution markers CD163+CD206], and Aß1-42 phagocytosis in patients initially diagnosed as having MCI or subjective cognitive impairment (SCI). At baseline, the median MMSE score in patients in both the apolipoprotein E (ApoE) ε3/ε3 and ApoE ε3/ε4 groups was 26.0 and macrophage Aß1-42 phagocytosis was defective. The MMSE rate of change increased in the ApoE ε3/ε3 group a median 2.2 points per year (P = 0.015 compared to 0) but did not change in the ApoE ε3/ε4 group (P = 0.014 between groups). In the ApoE ε3/ε3 group, all patients remained cognitively stable or improved; in the ApoE ε3/ε4 group, 1 recovered from dementia, but 3 lapsed into dementia. The macrophage phenotype polarized in patients bearing ApoE ε3/ε3 to an intermediate (green zone) M1-M2 type at the rate of 0.226 U/yr, whereas in patients bearing ApoE ε3/ε4, polarization was negative (P = 0.08 between groups). The baseline M1M2 type in the extreme M1 (red zone) or M2 (white zone) was unfavorable for cognitive outcome. Aß1-42 phagocytosis increased in both ApoE groups (P = 0.03 in each groups). In vitro, the lipidic mediator resolvin D1 (RvD1) down regulated the M1 type in patients with ApoE ε3/ε3 but in some patients with ε3/ε4, paradoxically up-regulated the M1 type. Antioxidant/ω-3/resveratrol supplementation was associated with favorable immune and cognitive responses in ApoE ε3/ε3 and individual patients bearing ApoE ε3/ε4, and brings into personalized clinical practice the immune benefits expected from ω-3 mediators called resolvins. The validity of this study is limited by its small size and uncontrolled design.-Famenini, S., Rigali, E. A., Olivera-Perez, H. M., Dang, J., Chang, M T., Halder, R., Rao, R. V., Pellegrini, M., Porter, V., Bredesen, D., Fiala, M. Increased intermediate M1-M2 macrophage polarization and improved cognition in mild cognitive impairment patients on ω-3 supplementation.


Assuntos
Transtornos Cognitivos/tratamento farmacológico , Cognição/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Macrófagos/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas E/sangue , Apolipoproteínas E/classificação , Apolipoproteínas E/metabolismo , Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Feminino , Humanos , Macrófagos/fisiologia , Masculino , Pessoa de Meia-Idade
4.
J Alzheimers Dis ; 52(1): 223-42, 2016 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-27060954

RESUMO

Recent studies have shown that inoculation of susceptible mice with amyloid-ß (Aß) peptides accelerates Aß deposition in the brain, supporting the idea that Aß may be self-amplifying; however, the exact mechanism is not understood. Here we provide evidence that Aß may self-amplify, in part, by inhibiting α-secretase ADAM10 (a disintegrin and metalloprotease) cleavage of full-length Aß precursor protein (FL AßPP) and therefore allow greater ß-secretase processing, and that Aß itself is a substrate for ADAM10. Exposure of primary neuronal cultures from PDAßPP mice to exogenous rat Aß1- 40 resulted in increased de novo human Aß1-42 production and exposure of cells to Aß decreased production of ADAM10 cleavage product soluble AßPPα (sAßPPα). In a cell-free assay, Aß decreased ADAM10 cleavage of the chimeric substrate MBP-AßPPC125 and Aß itself was apparently cleaved by the enzyme. The axonal guidance and trophic factor netrin-1, however, reduced the Aß1- 40-induced Aß1-42 increase, increased sAßPPα, and reversed the Aß-induced sAßPPα decrease in vitro. In vivo, induction of netrin-1 expression in PDAßPPSwe/Ind transgenic mice resulted in reductions in both Aß1-42 and Aß1- 40, and ICV delivery of netrin-1 to PDAßPPSwe/Ind mice increased sAßPPα, decreased Aß, and improved working memory. Finally, to support further study of netrin-1's potential as a therapeutic for Alzheimer's disease, pilot gene therapy studies were performed and a netrin mimetic peptide synthesized and tested that, like netrin, can increase sAßPPα and decrease Aß1-42in vitro. Taken together, these data provide mechanistic insights into Aß self-amplification and the ability of netrin-1 to disrupt it.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Precursor de Proteína beta-Amiloide/metabolismo , Terapia Genética/métodos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína ADAM10/metabolismo , Doença de Alzheimer/psicologia , Animais , Biomimética , Linhagem Celular Tumoral , Cognição/fisiologia , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Memória de Curto Prazo/fisiologia , Camundongos Transgênicos , Netrina-1 , Projetos Piloto , Ratos , Reconhecimento Psicológico/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
J Neurosci ; 36(3): 685-700, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26791201

RESUMO

A major unanswered question in biology and medicine is the mechanism by which the product of the apolipoprotein E ε4 allele, the lipid-binding protein apolipoprotein E4 (ApoE4), plays a pivotal role in processes as disparate as Alzheimer's disease (AD; in which it is the single most important genetic risk factor), atherosclerotic cardiovascular disease, Lewy body dementia, hominid evolution, and inflammation. Using a combination of neural cell lines, skin fibroblasts from AD patients, and ApoE targeted replacement mouse brains, we show in the present report that ApoE4 undergoes nuclear translocation, binds double-stranded DNA with high affinity (low nanomolar), and functions as a transcription factor. Using chromatin immunoprecipitation and high-throughput DNA sequencing, our results indicate that the ApoE4 DNA binding sites include ∼1700 gene promoter regions. The genes associated with these promoters provide new insight into the mechanism by which AD risk is conferred by ApoE4, because they include genes associated with trophic support, programmed cell death, microtubule disassembly, synaptic function, aging, and insulin resistance, all processes that have been implicated in AD pathogenesis. Significance statement: This study shows for the first time that apolipoprotein E4 binds DNA with high affinity and that its binding sites include 1700 promoter regions that include genes associated with neurotrophins, programmed cell death, synaptic function, sirtuins and aging, and insulin resistance, all processes that have been implicated in Alzheimer's disease pathogenesis.


Assuntos
Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Neurônios/fisiologia , Transcrição Gênica/fisiologia , Idoso , Animais , Sequência de Bases , Encéfalo/fisiologia , Linhagem Celular Tumoral , Feminino , Fibroblastos/fisiologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Ligação Proteica/fisiologia
6.
Oncotarget ; 6(16): 14092-122, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26041885

RESUMO

We applied a self-guiding evolutionary algorithm to initiate the synthesis of the Alzheimer's disease-related data and literature. A protein interaction network associated with amyloid-beta precursor protein (APP) and a seed model that treats Alzheimer's disease as progressive dysregulation of APP-associated signaling were used as dynamic "guides" and structural "filters" in the recursive search, analysis, and assimilation of data to drive the evolution of the seed model in size, detail, and complexity. Analysis of data and literature across sub-disciplines and system-scale discovery platforms suggests a key role of dynamic cytoskeletal connectivity in the stability, plasticity, and performance of multicellular networks and architectures. Chronic impairment and/or dysregulation of cell adhesions/synapses, cytoskeletal networks, and/or reversible epithelial-to-mesenchymal-like transitions, which enable and mediate the stable and coherent yet dynamic and reconfigurable multicellular architectures, may lead to the emergence and persistence of the disordered, wound-like pockets/microenvironments of chronically disconnected cells. Such wound-like microenvironments support and are supported by pro-inflammatory, pro-secretion, de-differentiated cellular phenotypes with altered metabolism and signaling. The co-evolution of wound-like microenvironments and their inhabitants may lead to the selection and stabilization of degenerated cellular phenotypes, via acquisition of epigenetic modifications and mutations, which eventually result in degenerative disorders such as cancer and Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Algoritmos , Precursor de Proteína beta-Amiloide/metabolismo , Adesão Celular/fisiologia , Humanos
7.
FASEB J ; 29(7): 2681-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25805829

RESUMO

We investigated the effects of 4-17 month supplementation with ω-3 fatty acids and antioxidants (Smartfish drink; Smartfish AS, Oslo, Norway) in 12 patients with minor cognitive impairment (MCI) [minimental state examination (MMSE) ≥19], 2 patients with pre-MCI (normal MMSE), and 7 patients with Alzheimer disease (AD) (MMSE <19). We measured the phagocytosis of amyloid-ß 1-42 (Aß) by flow cytometry and microscopy, the transcription of inflammatory genes by RT-PCR, the production of resolvin D1 (RvD1) by enzyme immunoassay, and the cognitive status by MMSE. In patients with MCI and pre-MCI, phagocytosis of Aß by monocytes increased from 530 to 1306 mean fluorescence intensity units (P = 0.016). The increase in patients with AD was not significant (N.S.). The lipidic mediator RvD1, which stimulates Aß phagocytosis in vitro, increased in macrophages in 80% of patients with MCI and pre-MCI (mean increase 9.95 pg/ml) (N.S.). Transcription of inflammatory genes' mRNAs was increased in a subgroup of patients with low transcription at baseline, whereas it was not significantly changed in patients with high transcription at baseline. The mean MMSE score of patients with MCI and pre-MCI was 25.9 at baseline and 25.7 after 4-17 months (N.S.). Our study is the first to show significant immune and biochemical effects of ω-3 fatty acids with antioxidants in patients with MCI. Cognitive benefits of ω-3 supplementation in patients with MCI should be tested in a clinical trial.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/dietoterapia , Disfunção Cognitiva/fisiopatologia , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Antioxidantes/administração & dosagem , Colecalciferol/administração & dosagem , Disfunção Cognitiva/psicologia , Suplementos Nutricionais , Feminino , Humanos , Inflamação/dietoterapia , Inflamação/genética , Inflamação/fisiopatologia , Macrófagos/fisiologia , Masculino , Entrevista Psiquiátrica Padronizada , Pessoa de Meia-Idade , Monócitos/fisiologia , Fagocitose , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resveratrol , Estilbenos/administração & dosagem
8.
J Alzheimers Dis ; 40(3): 605-617, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24531152

RESUMO

An unbiased screen for compounds that block amyloid-ß protein precursor (AßPP) caspase cleavage identified ADDN-1351, which reduced AßPP-C31 by 90%. Target identification studies showed that ADDN-1351 is a TrkA inhibitor, and, in complementary studies, TrkA overexpression increased AßPP-C31 and cell death. TrkA was shown to interact with AßPP and suppress AßPP-mediated transcriptional activation. Moreover, treatment of PDAPP transgenic mice with the known TrkA inhibitor GW441756 increased sAßPPα and the sAßPPα to Aß ratio. These results suggest TrkA inhibition-rather than NGF activation-as a novel therapeutic approach, and raise the possibility that such an approach may counteract the hyperactive signaling resulting from the accumulation of active NGF-TrkA complexes due to reduced retrograde transport. The results also suggest that one component of an optimal therapy for Alzheimer's disease may be a TrkA inhibitor.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Receptor trkA/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Benzamidas/farmacologia , Células CHO , Morte Celular/efeitos dos fármacos , Cricetulus , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia , Inibidores de Proteínas Quinases/química , Pirazóis/farmacologia , Receptor trkA/antagonistas & inibidores , Receptor trkA/genética , Transfecção
9.
EMBO Mol Med ; 5(6): 795-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23703924

RESUMO

To date, no truly effective therapy has been developed for Alzheimer's disease or mild cognitive impairment. In searching for new approaches that may succeed where previous ones have failed, it may be instructive to consider the successful therapeutic developments for other chronic illnesses such as cancer and human immunodeficiency virus.


Assuntos
Doença de Alzheimer/terapia , Envelhecimento , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Humanos , Camundongos , Vitamina D/metabolismo
10.
Alzheimers Res Ther ; 4(3): 22, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22747839

RESUMO

Alzheimer's disease is an age-associated, irreversible, progressive neurodegenerative disease that is characterized by severe memory loss, unusual behavior, personality changes, and a decline in cognitive function. No cure for Alzheimer's exists, and the drugs currently available to treat the disease have limited effectiveness. It is believed that therapeutic intervention that could postpone the onset or progression of Alzheimer's disease would dramatically reduce the number of cases in the next 50 years. Ayurvedic medicinal plants have been the single most productive source of leads for the development of drugs, and over a hundred new products are already in clinical development. Indeed, several scientific studies have described the use of various Ayurvedic medicinal plants and their constituents for treatment of Alzheimer's disease. Although the exact mechanism of their action is still not clear, phytochemical studies of the different parts of the plants have shown the presence of many valuable compounds, such as lignans, flavonoids, tannins, polyphenols, triterpenes, sterols, and alkaloids, that show a wide spectrum of pharmacological activities, including anti-inflammatory, anti-amyloidogenic, anti-cholinesterase, hypolipidemic, and antioxidant effects. This review gathers research on various medicinal plants that have shown promise in reversing the Alzheimer's disease pathology. The report summarizes information concerning the phytochemistry, biological, and cellular activities and clinical applications of these various plants in order to provide sufficient baseline information that could be used in drug discovery campaigns and development process, thereby providing new functional leads for Alzheimer's disease.

11.
PLoS One ; 7(7): e40125, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808104

RESUMO

Hunter-killer peptides combine two activities in a single polypeptide that work in an independent fashion like many other multi-functional, multi-domain proteins. We hypothesize that emergent functions may result from the combination of two or more activities in a single protein domain and that could be a mechanism selected in nature to form moonlighting proteins. We designed moonlighting peptides using the two mechanisms proposed to be involved in the evolution of such molecules (i.e., to mutate non-functional residues and the use of natively unfolded peptides). We observed that our moonlighting peptides exhibited two activities that together rendered a new function that induces cell death in yeast. Thus, we propose that moonlighting in proteins promotes emergent properties providing a further level of complexity in living organisms so far unappreciated.


Assuntos
Peptídeos/farmacologia , Sequência de Aminoácidos , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Dilatação Mitocondrial/efeitos dos fármacos , Dados de Sequência Molecular , Peptídeos/química , Feromônios/farmacologia , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos
12.
PLoS One ; 7(6): e40027, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22768208

RESUMO

One of the events associated with Alzheimer's disease is the dysregulation of α- versus ß-cleavage of the amyloid precursor protein (APP). The product of α-cleavage (sAPPα) has neuroprotective properties, while Aß1-42 peptide, a product of ß-cleavage, is neurotoxic. Dimerization of APP has been shown to influence the relative rate of α- and ß- cleavage of APP. Thus finding compounds that interfere with dimerization of the APP ectodomain and increase the α-cleavage of APP could lead to the development of new therapies for Alzheimer's disease. Examining the intrinsic fluorescence of a fragment of the ectodomain of APP, which dimerizes through the E2 and Aß-cognate domains, revealed significant changes in the fluorescence of the fragment upon binding of Aß oligomers--which bind to dimers of the ectodomain--and Aß fragments--which destabilize dimers of the ectodomain. This technique was extended to show that RERMS-containing peptides (APP(695) 328-332), disulfiram, and sulfiram also inhibit dimerization of the ectodomain fragment. This activity was confirmed with small angle x-ray scattering. Analysis of the activity of disulfiram and sulfiram in an AlphaLISA assay indicated that both compounds significantly enhance the production of sAPPα by 7W-CHO and B103 neuroblastoma cells. These observations demonstrate that there is a class of compounds that modulates the conformation of the APP ectodomain and influences the ratio of α- to ß-cleavage of APP. These compounds provide a rationale for the development of a new class of therapeutics for Alzheimer's disease.


Assuntos
Precursor de Proteína beta-Amiloide/biossíntese , Precursor de Proteína beta-Amiloide/química , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/química , Multimerização Proteica , Proteólise , Naftalenossulfonato de Anilina/metabolismo , Animais , Células CHO , Cricetinae , Dissulfiram/análogos & derivados , Dissulfiram/metabolismo , Fluorescência , Humanos , Modelos Moleculares , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Espalhamento a Baixo Ângulo , Triptofano/metabolismo , Difração de Raios X
13.
PLoS One ; 6(12): e28530, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174832

RESUMO

Two of the greatest challenges in regenerative medicine today remain (1) the ability to culture human embryonic stem cells (hESCs) at a scale sufficient to satisfy clinical demand and (2) the ability to eliminate teratoma-forming cells from preparations of cells with clinically desirable phenotypes. Understanding the pathways governing apoptosis in hESCs may provide a means to address these issues. Limiting apoptosis could aid scaling efforts, whereas triggering selective apoptosis in hESCs could eliminate unwanted teratoma-forming cells. We focus here on the BCL-2 family of proteins, which regulate mitochondrial-dependent apoptosis. We used quantitative PCR to compare the steady-state expression profile of all human BCL-2 family members in hESCs with that of human primary cells from various origins and two cancer lines. Our findings indicate that hESCs express elevated levels of the pro-apoptotic BH3-only BCL-2 family members NOXA, BIK, BIM, BMF and PUMA when compared with differentiated cells and cancer cells. However, compensatory expression of pro-survival BCL-2 family members in hESCs was not observed, suggesting a possible explanation for the elevated rates of apoptosis observed in proliferating hESC cultures, as well as a mechanism that could be exploited to limit hESC-derived neoplasms.


Assuntos
Apoptose , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular , Linhagem da Célula/genética , Sobrevivência Celular , Análise por Conglomerados , Genes Essenciais/genética , Humanos , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
14.
Aging Dis ; 2(1): 18-29, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21874159

RESUMO

Transplantation of embryonic stem cell (ESC)-derived precursors holds great promise for treating various disease conditions. Tracing of precursors derived from ESC after transplantation is important to determine their migration and fate. Chemical labeling, as well as transfection or viral-mediated transduction of tracer genes in ESC or in ESC-derived precursors, which are the methods that have been used in the generation of the vast majority of labeled ESCs, have serious drawbacks such as varying efficacy. To circumvent this problem we generated endogenously traceable mouse (m)ESC clones by direct derivation from blastocysts of transgenic mice expressing enhanced green fluorescent protein (EGFP) under control of the housekeeping ß-actin promoter The only previous report of endogenously EGFP-labeled mESC derived directly from transgenic EGFP embryos is that of Ahn and colleagues (Ahn et al, 2008. Cytotherapy 10:759-769), who used embryos from a different transgenic line and used a significantly different protocol for derivation. Cells from a high-expressing EGFP-mESC clone, G11, retain high levels of EGFP expression after differentiation into derivatives of all three primary germ layers both in vitro and in vivo, and contribution to all tissues in chimeric progeny. To determine whether progenitor cells derived from G11 could be used in transplantation experiments, we differentiated them to early neuronal precursors and injected them into syngeneic mouse brains. Transplanted EGFP-expressing cells at different stages of differentiation along the neuronal lineage could be identified in brains by expression of EGFP twelve weeks after transplantation. Our results suggest that the EGFP-mESC(G11) line may constitute a useful tool in ESC-based cell and tissue replacement studies.

15.
Sci Signal ; 4(157): mr2, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21266712

RESUMO

The fourth meeting on dependence receptors featured descriptions of previously unknown dependence receptors. New mechanistic data were presented on the switch between the trophic, antiapoptotic response with the proapoptotic response that occurs with loss of trophic support. The possibility that the loss of trophic support may also involve the binding of an active antitrophin was also discussed. New in vivo data were presented on the roles of dependence receptors in development, angiogenesis, oncogenesis, and neurodegeneration, as well as new therapeutic approaches based on dependence receptor function. The next meeting on dependence receptors is scheduled for 2012.


Assuntos
Apoptose/fisiologia , Caspases/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/fisiologia , Moléculas de Adesão Celular , Desenho de Fármacos , Humanos , Ligantes , Modelos Biológicos , Receptores de Netrina
16.
J Mol Neurosci ; 44(2): 91-102, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21249466

RESUMO

Previously, we identified valosin-containing protein (VCP) as a mediator of ER stress-induced cell death. Mutations in the VCP gene including R93, R155, and R191 have been described that manifest clinically as hereditary inclusion body myopathy with Paget's disease of bone and frontotemporal dementia. In addition, other studies have demonstrated that as a consequence of a mutation generated in the second ATP binding domain of VCP (K524A), cells accumulated large cytoplasmic vacuoles and underwent programmed cell death. In order to better understand the biochemical and molecular consequences of the clinically relevant VCP mutations as well as the genetically engineered ATPase-inactive mutant K524A and any relationship these may have to ER stress-induced cell death, we introduced analogous mutations separately and together into the human VCP gene and evaluated their effect on proteasome activity, Huntingtin protein aggregation and ER stress-induced cell death. Our results indicate that the VCP K524A mutant and the triple mutant VCP R93C-R155C-K524A block protein degradation, trigger Huntingtin aggregate formation, and render cells highly susceptible to ER stress-induced cell death as compared to VCPWT or other VCP mutants.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Mutação , Degeneração Neural/patologia , Fenótipo , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Morte Celular/genética , Retículo Endoplasmático/metabolismo , Inibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Proteína Huntingtina , Degeneração Neural/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Tapsigargina/metabolismo , Ubiquitina/metabolismo , Proteína com Valosina
17.
Biochem Biophys Res Commun ; 388(2): 450-5, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19679105

RESUMO

The cytoplasmic tail of the amyloid precursor protein (APP) contains two putatively cytotoxic peptides, Jcasp and C31, derived by caspase cleavage of APP. Jcasp is a fragment starting from the epsilon-secretase site to position 664, while C31 is a fragment from position 665 to the C-terminus. Our studies now showed that compared to C31, Jcasp appeared to play a minor role in cytotoxicity. In particular, inhibition of Jcasp generation by treatment of gamma-secretase inhibitor did not lead to any attenuation of C31-induced toxicity. Secondly, because C31 toxicity is largely absent in cells lacking endogenous APP, we determined, using a split beta-galactosidase complementary assay to monitor protein-protein interactions, the presence of APP associated complexes. Our results demonstrated that both APP homomeric and C31/APP heteromeric complexes were correlated with cell death, indicating that C31 complexes with APP to recruit the interacting partners that initiate the signals related to cellular toxicity.


Assuntos
Precursor de Proteína beta-Amiloide/biossíntese , Citotoxinas/biossíntese , Fragmentos de Peptídeos/biossíntese , Doença de Alzheimer/metabolismo , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Apoptose , Ácido Aspártico/genética , Linhagem Celular Tumoral , Citotoxinas/genética , Dipeptídeos/farmacologia , Camundongos , Dados de Sequência Molecular , Fragmentos de Peptídeos/genética , Multimerização Proteica , Estrutura Terciária de Proteína , Ratos
18.
Ann Neurol ; 65(3): 294-303, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19334058

RESUMO

OBJECTIVE: Selective neuronal vulnerability in neurodegenerative diseases is poorly understood. In Alzheimer's disease, the basal forebrain cholinergic neurons are selectively vulnerable, putatively because of their expression of the cell death mediator p75(NTR) (the common neurotrophin receptor), and its interaction with proapoptotic ligands pro-nerve growth factor and amyloid-beta peptide. However, the relation between amyloid precursor protein (APP) and p75(NTR) has not been described previously. METHODS: APP and p75(NTR) were assayed for interaction by coimmunoprecipitation in vitro and in vivo, yeast two-hybrid assay, bioluminescence resonance energy transfer, and confocal microscopy. Effects on APP processing and signaling were studied using immunoblotting, enzyme-linked immunosorbent assays, and luciferase reporter assays. RESULTS: The results of this study are as follows: (1) p75(NTR) and APP interact directly; (2) this interaction is modified by ligands nerve growth factor and beta-amyloid; (3) APP and p75(NTR) colocalization in vivo is modified in Alzheimer's model transgenic mice; (4) APP processing is altered by p75(NTR), and to a lesser extent, p75(NTR) processing is altered by the presence of APP; (5) APP-dependent transcription mediated by Fe65 is blocked by p75(NTR); and (6) coexpression of APP and p75(NTR) triggers cell death. INTERPRETATION: These results provide new insight into the emerging signaling network that mediates the Alzheimer's phenotype and into the mechanism of basal forebrain cholinergic neuronal selective vulnerability. In addition, the results argue that the interaction between APP and p75(NTR) may represent a therapeutic target in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/farmacologia , Precursor de Proteína beta-Amiloide/genética , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Proteínas de Fluorescência Verde/genética , Humanos , Imunoprecipitação/métodos , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/genética , Neuroblastoma , Proteínas Nucleares/metabolismo , Ligação Proteica/efeitos dos fármacos , Ratos , Receptores de Fator de Crescimento Neural/genética , Transfecção/métodos , Técnicas do Sistema de Duplo-Híbrido
19.
J Mol Neurosci ; 39(1-2): 157-68, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19145491

RESUMO

Resveratrol, a naturally occurring polyphenol, exhibits antioxidant, antiaging, and anticancer activity. Resveratrol has also been shown to inhibit tumor initiation, promotion, and progression in a variety of cell culture systems. Earlier, we showed that paraquat, a bipyridyl herbicide, triggers endoplasmic reticulum stress, cell dysfunction, and dopaminergic cell death. Due to its antioxidant activity, we assessed the ability of resveratrol to rescue cells from the toxic effects of paraquat. While resveratrol did not have any protective effect at low concentrations, it triggered endoplasmic reticulum (ER) stress-induced cell death at higher concentrations (50-250 microM). The present study was carried out to determine the mechanism by which resveratrol triggers ER stress and cell death in dopaminergic N27 cells. Our studies demonstrate that resveratrol triggers ER stress and cell dysfunction, caspase activation, p23 cleavage and inhibition of proteasomal activity in dopaminergic N27 cells. While over expression of uncleavable p23 was associated with decreased cell death, downregulation of p23 protein expression by siRNA resulted in enhancement of ER stress-induced cell death triggered by resveratrol indicating a protective role for the small co-chaperone p23 in dopaminergic cell death.


Assuntos
Antioxidantes/farmacologia , Morte Celular/efeitos dos fármacos , Dopamina/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Estresse Oxidativo , Estilbenos/farmacologia , Animais , Caspases/metabolismo , Linhagem Celular , Cinamatos/farmacologia , Retículo Endoplasmático/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Ratos , Resveratrol , Tioureia/análogos & derivados , Tioureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA