Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Elife ; 122024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578269

RESUMO

Background: Circulating omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) have been associated with various chronic diseases and mortality, but results are conflicting. Few studies examined the role of omega-6/omega-3 ratio in mortality. Methods: We investigated plasma omega-3 and omega-6 PUFAs and their ratio in relation to all-cause and cause-specific mortality in a large prospective cohort, the UK Biobank. Of 85,425 participants who had complete information on circulating PUFAs, 6461 died during follow-up, including 2794 from cancer and 1668 from cardiovascular disease (CVD). Associations were estimated by multivariable Cox proportional hazards regression with adjustment for relevant risk factors. Results: Risk for all three mortality outcomes increased as the ratio of omega-6/omega-3 PUFAs increased (all Ptrend <0.05). Comparing the highest to the lowest quintiles, individuals had 26% (95% CI, 15-38%) higher total mortality, 14% (95% CI, 0-31%) higher cancer mortality, and 31% (95% CI, 10-55%) higher CVD mortality. Moreover, omega-3 and omega-6 PUFAs in plasma were all inversely associated with all-cause, cancer, and CVD mortality, with omega-3 showing stronger effects. Conclusions: Using a population-based cohort in UK Biobank, our study revealed a strong association between the ratio of circulating omega-6/omega-3 PUFAs and the risk of all-cause, cancer, and CVD mortality. Funding: Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institute of Health under the award number R35GM143060 (KY). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Fatty acids play an essential role in health. Studies have shown that diets high in omega-3 fatty acids found in foods like fish, fish oil, flaxseed and walnuts may be beneficial. Yet some studies have raised concern that too many omega-6 fatty acids in Western diets rich in vegetable oils may be harmful. Some scientists have proposed that the balance of omega-3 and omega-6 in diets is vital to health. They hypothesize that a higher omega-6 to omega-3 fatty acids ratio is detrimental. But, proving that a higher ratio of omega-6 to omega-3 fatty acids is harmful has been difficult. Many studies have found conflicting results. Scientists have struggled to accurately measure fatty acid intake as tracking an individual's dietary intake is challenging and self-reported dietary intake may be incorrect. Additionally, scientists must follow individuals for many years to determine if a high ratio of omega-6 to omega-3 is linked with cancer, heart disease, or death. But, measuring circulating fatty acids in an individual's blood may offer an easier and more reliable approach to studying the health impacts of these vital nutrients. Zhang et al. show that people with higher ratios of omega-6 to omega-3 fatty acids in their blood are at greater risk of dying from cancer, heart disease, or any cause than those with lower ratios. The experiments measured omega-6 and omega-3 fatty acid levels in more than 85,000 participants in the UK Biobank who scientists followed for an average of about 13 years. Participants with the highest ratios of omega-6 to omega-3 fatty acids were 26% more likely to die of any cause, 14% more likely to die of cancer, and 31% more likely to die of heart disease than individuals with the lowest ratios. Individually, high levels of omega-6 fatty acids and high levels of omega-3 fatty acids were both associated with a lower risk of dying. But the protective effects of omega-3 were greater. For example, individuals with the highest levels of omega-6 fatty acids were 23% less likely to die of any cause. By comparison, those with the highest levels of omega-3s were 31% less likely to die. The stronger protection offered by high levels of omega-3s likely explains why having a high ratio of omega-6s to omega-3s was linked to harm. Both are protective. But the protection provided by omega-3s is more robust. The experiments support dietary interventions to raise omega-3 fatty acid levels and maintain a low omega-6 to omega-3 fatty acid ratio to prevent early deaths from cancer, heart disease or other causes. More research is needed to understand the impact of dietary fatty acid intake on other diseases and how genetics may influence the health impact of fatty acids.


Assuntos
Doenças Cardiovasculares , Ácidos Graxos Ômega-3 , Neoplasias , Humanos , Estudos de Coortes , Estudos Prospectivos , Biobanco do Reino Unido , Bancos de Espécimes Biológicos , Ácidos Graxos Ômega-6 , Neoplasias/epidemiologia
2.
Cancers (Basel) ; 16(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38672672

RESUMO

MYCN amplification (MNA) and disruption of tumor suppressor microRNA (TSmiR) function are key drivers of poor outcomes in neuroblastoma (NB). While MYCN and TSmiRs regulate glucose metabolism, their role in de novo fatty acid synthesis (FAS) and unsaturated FAS (UFAS) remains poorly understood. Here, we show that FAS and UFAS (U/FAS) genes FASN, ELOVL6, SCD, FADS2, and FADS1 are upregulated in high-risk (HR) NB and that their expression is associated with lower overall survival. RNA-Seq analysis of human NB cell lines revealed parallel U/FAS gene expression patterns. Consistent with this, we found that NB-related TSmiRs were predicted to target these genes extensively. We further observed that both MYC and MYCN upregulated U/FAS pathway genes while suppressing TSmiR host gene expression, suggesting a possible U/FAS regulatory network between MYCN and TSmiRs in NB. NB cells are high in de novo synthesized omega 9 (ω9) unsaturated fatty acids and low in both ω6 and ω3, suggesting a means for NB to limit cell-autonomous immune stimulation and reactive oxygen species (ROS)-driven apoptosis from ω6 and ω3 unsaturated fatty acid derivatives, respectively. We propose a model in which MYCN and TSmiRs regulate U/FAS and play an important role in NB pathology, with implications for other MYC family-driven cancers.

3.
medRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38343844

RESUMO

Background: Previous epidemiological studies of the associations between polyunsaturated fatty acids (PUFAs) and cancer incidence have been inconsistent. We investigated the associations of plasma omega-3 and omega-6 PUFAs with the incidence of overall and 19 site-specific cancers in a large prospective cohort. Methods: 253,138 eligible UK Biobank participants were included in our study. With a mean follow-up of 12.9 years, 29,838 participants were diagnosed with cancer. The plasma levels of omega-3 and omega-6 PUFAs were expressed as percentages of total fatty acids (omega-3% and omega-6%). Results: In our main models, both omega-6% and omega-3% were inversely associated with overall cancer incidence (HR per SD = 0.98, 95% CI = 0.96-0.99; HR per SD = 0.99, 95% CI = 0.97-1.00; respectively). Of the 19 site-specific cancers available, 14 were associated with omega-6% and five with omega-3%, all indicating inverse associations, with the exception that prostate cancer was positively associated with omega-3% (HR per SD = 1.03, 95% CI = 1.01 - 1.05). Conclusions: Our population-based cohort study in UK Biobank indicates small inverse associations of plasma omega-6 and omega-3 PUFAs with the incidence of overall and most site-specific cancers, although there are notable exceptions, such as prostate cancer.

4.
Food Funct ; 15(3): 1071-1088, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38197562

RESUMO

The biological functions of fatty acids and the lipids in which they are esterified are determined by their chain length, double bond position and geometry and other structural motifs such as the presence of methyl branches. Unusual isomeric features in fatty acids of human foods such as conjugated double bonds or chain branching found in dairy products, some seeds and nuts, and marine foods potentially have important effects on human health. Recent advancements in identifying fatty acids with unusual double bond positions and pinpointing the position of methyl branches have empowered the study of their biological functions. We present recent advances in fatty acid structural elucidation by mass spectrometry in comparison with the more traditional methods. The double bond position can be determined by purely instrumental methods, specifically solvent-mediated covalent adduct chemical ionization (SM-CACI) and ozone induced dissociation (OzID), with charge inversion methods showing promise. Prior derivatization using the Paternò-Büchi (PB) reaction to yield stable structures that, upon collisional activation, yield the double bond position has emerged. The chemical ionization (CI) based three ion monitoring (MRM) method has been developed to simultaneously identify and quantify low-level branched chain fatty acids (BCFAs), unattainable by electron ionization (EI) based methods. Accurate identification and quantification of unusual fatty acid isomers has led to research progress in the discovery of biomarkers for cancer, diabetes, nonalcoholic fatty liver disease (NAFLD) and atherosclerosis. Modulation of eicosanoids, weight loss and the health significance of BCFAs are also presented. This review clearly shows that the improvement of analytical capacity is critical in the study of fatty acid biological functions, and stronger coupling of the methods discussed here with fatty acid mechanistic research is promising in generating more refined outcomes.


Assuntos
Ácidos Graxos , Alimentos , Humanos , Ácidos Graxos/química , Isomerismo , Espectrometria de Massas/métodos , Solventes
5.
medRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36711941

RESUMO

Background: Circulating omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) have been associated with various chronic diseases and mortality, but results are conflicting. Few studies examined the role of omega-6/omega-3 ratio in mortality. Methods: We investigated plasma omega-3 and omega-6 PUFAs and their ratio in relation to all-cause and cause-specific mortality in a large prospective cohort, the UK Biobank. Of 85,425 participants who had complete information on circulating PUFAs, 6,461 died during follow-up, including 2,794 from cancer and 1,668 from cardiovascular disease (CVD). Associations were estimated by multivariable Cox proportional hazards regression with adjustment for relevant risk factors. Results: Risk for all three mortality outcomes increased as the ratio of omega-6/omega-3 PUFAs increased (all Ptrend < 0.05). Comparing the highest to the lowest quintiles, individuals had 26% (95% CI, 15-38%) higher total mortality, 14% (95% CI, 0-31%) higher cancer mortality, and 31% (95% CI, 10-55%) higher CVD mortality. Moreover, omega-3 and omega-6 PUFAs in plasma were all inversely associated with all-cause, cancer, and CVD mortality, with omega-3 showing stronger effects. Conclusions: Using a population-based cohort in UK Biobank, our study revealed a strong association between the ratio of circulating omega-6/omega-3 PUFAs and the risk of all-cause, cancer, and CVD mortality.

6.
Prog Lipid Res ; 92: 101242, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37597812

RESUMO

Dysregulation of fatty acid metabolism and de novo lipogenesis is a key driver of several cancer types through highly unsaturated fatty acid (HUFA) signaling precursors such as arachidonic acid. The human chromosome 11q13 locus has long been established as the most frequently amplified in a variety of human cancers. The fatty acid desaturase genes (FADS1, FADS2 and FADS3) responsible for HUFA biosynthesis localize to the 11q12-13.1 region. FADS2 activity is promiscuous, catalyzing biosynthesis of several unsaturated fatty acids by Δ6, Δ8, and Δ4 desaturation. Our main aim here is to review known and putative consequences of FADS2 dysregulation due to effects on the 11q13 locus potentially driving various cancer types. FADS2 silencing causes synthesis of sciadonic acid (5Z,11Z,14Z-20:3) in MCF7 cells and breast cancer in vivo. 5Z,11Z,14Z-20:3 is structurally identical to arachidonic acid (5Z,8Z,11Z,14Z-20:4) except it lacks the internal Δ8 double bond required for prostaglandin and leukotriene synthesis, among other eicosanoids. Palmitic acid has substrate specificity for both SCD and FADS2. Melanoma, prostate, liver and lung cancer cells insensitive to SCD inhibition show increased FADS2 activity and sapienic acid biosynthesis. Elevated serum mead acid levels found in hepatocellular carcinoma patients suggest an unsatisfied demand for arachidonic acid. FADS2 circular RNAs are at high levels in colorectal and lung cancer tissues. FADS2 circular RNAs are associated with shorter overall survival in colorectal cancer patients. The evidence thusfar supports an effort for future research on the role of FADS2 as a tumor suppressor in a range of neoplastic disorders.


Assuntos
Neoplasias Pulmonares , RNA Circular , Masculino , Humanos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Araquidônicos
8.
Artigo em Inglês | MEDLINE | ID: mdl-35381532

RESUMO

Many current treatment options for lung inflammation and thrombosis come with unwanted side effects. The natural omega-3 fatty acids (O3FA) are generally anti-inflammatory and antithrombotic. O3FA are always administered orally and occasionally by intravenous (IV) infusion. The main goal of this study is to determine if O3FA administered by inhalation of a nebulized formulation mitigates LPS-induced acute lung inflammation in male Wistar rats. Inflammation was triggered by intraperitoneal injection of LPS once a day for 14 days. One hour post-injection, rats received nebulized treatments consisting of egg lecithin emulsified O3, Budesonide and Montelukast, and blends of O3 and Melatonin or Montelukast or Cannabidiol; O3 was in the form of free fatty acids for all groups except one group with ethyl esters. Lung histology and cytokines were determined in n = 3 rats per group at day 8 and day 15. All groups had alveolar histiocytosis severity scores half or less than that of the disease control (Cd) treated with LPS and saline only inhalation. IL-6, TNF-α, TGF-ß, and IL-10 were attenuated in all O3FA groups. IL-1ß was attenuated in most but not all O3 groups. O3 administered as ethyl ester was overall most effective in mitigating LPS effects. No evidence of lipid pneumonia or other chronic distress was observed. These preclinical data suggest that O3FA formulations should be further investigated as treatments in lung inflammation and thrombosis related lung disorders, including asthma, chronic obstructive pulmonary disease, lung cancer and acute respiratory distress such as COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Ácidos Graxos Ômega-3 , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Animais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Lipopolissacarídeos , Masculino , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Ratos , Ratos Wistar
9.
Aging Cell ; 21(4): e13579, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35257475

RESUMO

Oxidative stress plays a central role in age-related macular degeneration (AMD). Iron, a potent generator of hydroxyl radicals through the Fenton reaction, has been implicated in AMD. One easily oxidized molecule is docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in photoreceptor membranes. Oxidation of DHA produces toxic oxidation products including carboxyethylpyrrole (CEP) adducts, which are increased in the retinas of AMD patients. In this study, we hypothesized that deuterium substitution on the bis-allylic sites of DHA in photoreceptor membranes could prevent iron-induced retinal degeneration by inhibiting oxidative stress and lipid peroxidation. Mice were fed with either DHA deuterated at the oxidation-prone positions (D-DHA) or control natural DHA and then given an intravitreal injection of iron or control saline. Orally administered D-DHA caused a dose-dependent increase in D-DHA levels in the neural retina and retinal pigment epithelium (RPE) as measured by mass spectrometry. At 1 week after iron injection, D-DHA provided nearly complete protection against iron-induced retinal autofluorescence and retinal degeneration, as determined by in vivo imaging, electroretinography, and histology. Iron injection resulted in carboxyethylpyrrole conjugate immunoreactivity in photoreceptors and RPE in mice fed with natural DHA but not D-DHA. Quantitative PCR results were consistent with iron-induced oxidative stress, inflammation, and retinal cell death in mice fed with natural DHA but not D-DHA. Taken together, our findings suggest that DHA oxidation is central to the pathogenesis of iron-induced retinal degeneration. They also provide preclinical evidence that dosing with D-DHA could be a viable therapeutic strategy for retinal diseases involving oxidative stress.


Assuntos
Atrofia Geográfica , Sobrecarga de Ferro , Degeneração Macular , Degeneração Retiniana , Animais , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/efeitos adversos , Atrofia Geográfica/induzido quimicamente , Atrofia Geográfica/metabolismo , Atrofia Geográfica/patologia , Humanos , Ferro/efeitos adversos , Ferro/metabolismo , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Camundongos , Estresse Oxidativo , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo
10.
Am J Clin Nutr ; 115(5): 1322-1333, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-34726694

RESUMO

BACKGROUND: There is concern that the PUFA composition of ready-to-use therapeutic food (RUTF) for the treatment of severe acute malnutrition (SAM) is suboptimal for neurocognitive recovery. OBJECTIVES: We tested the hypothesis that RUTF made with reduced amounts of linoleic acid, achieved using high-oleic (HO) peanuts without added DHA (HO-RUTF) or with added DHA (DHA-HO-RUTF), improves cognition when compared with standard RUTF (S-RUTF). METHODS: A triple-blind, randomized, controlled clinical feeding trial was conducted among children with uncomplicated SAM in Malawi with 3 types of RUTF: DHA-HO-RUTF, HO-RUTF, and S-RUTF. The primary outcomes, measured in a subset of subjects, were the Malawi Developmental Assessment Tool (MDAT) global z-score and a modified Willatts problem-solving assessment (PSA) intention score for 3 standardized problems, measured 6 mo and immediately after completing RUTF therapy, respectively. MDAT domain z-scores, plasma fatty acid content, anthropometry, and eye tracking were secondary outcomes. Comparisons were made between the novel PUFA RUTFs and S-RUTF. RESULTS: Among the 2565 SAM children enrolled, mean global MDAT z-scores were -0.69 ± 1.19 and -0.88 ± 1.27 for children receiving DHA-HO-RUTF and S-RUTF, respectively (difference 0.19, 95% CI: 0.01, 0.38). Children receiving DHA-HO-RUTF had higher gross motor and social domain z-scores than those receiving S-RUTF. The PSA problem 3 scores did not differ by dietary group (OR: 0.92, 95% CI: 0.67, 1.26 for DHA-HO-RUTF). After 4 wk of treatment, plasma phospholipid EPA and α-linolenic acid were greater in children consuming DHA-HO-RUTF or HO-RUTF when compared with S-RUTF (for all 4 comparisons P values < 0.001), but only plasma DHA was greater in DHA-HO-RUTF than S-RUTF (P < 0.001). CONCLUSIONS: Treatment of uncomplicated SAM with DHA-HO-RUTF resulted in an improved MDAT score, conferring a cognitive benefit 6 mo after completing diet therapy. This treatment should be explored in operational settings. This trial was registered at clinicaltrials.gov as NCT03094247.


Assuntos
Desnutrição , Desnutrição Aguda Grave , Criança , Cognição , Fast Foods , Humanos , Lactente , Ácido Linoleico , Masculino , Desnutrição/tratamento farmacológico , Antígeno Prostático Específico
11.
Curr Opin Clin Nutr Metab Care ; 25(2): 60-66, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34937850

RESUMO

PURPOSE OF REVIEW: Molecular studies have clarified the roles of the fatty acid desaturase (FADSx) and elongation of very long chain fatty acid (ELOVLx) genes, as well as acyl-coenzyme A synthase long-chain isoforms (ACSLx) required for entry to long-chain polyunsaturated fatty acid (LCPUFA) biosynthetic pathways. RECENT FINDINGS: FADS1 and FADS2 but not FADS3 are active toward PUFA. FADS1 is a Δ5-desaturase operating on five C20 PUFA, and is strongly regulated by human genetic polymorphisms, modulating circulating arachidonic acid (20:4n-6) levels. In contrast, FADS2 operates on at least 16 substrates, including five saturates, and catalyzes Δ6, Δ4, and Δ8 desaturation. FADS2 silencing in cancer cells leads to FADS1 synthesis of unusual fatty acids. ACSL6 and ACSL4 are required to maintain tissue 22:6n-3 and 20:4n-6, respectively. FADS2AT2, is the first transcript to differentially inhibit desaturation, attenuating 18:3n-3 but not 18:2n-6 desaturation. The PUFA elongases ELOVL5, 2, and 4 are implicated in cancer, age-related methylation, and retinal degeneration, respectively. SUMMARY: The mixture of fatty acids available to FADS2 in any tissue defines the product mixture available for further synthesis of membrane lipids and signaling molecules and may be relevant in many clinical conditions including cancer. Functional genetic variants define the levels of circulating arachidonic acid via FADS1 regulation; genotypes that drive high arachidonic acid may predispose to disease.


Assuntos
Ácidos Graxos Dessaturases , Lipogênese , Ácidos Araquidônicos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos , Ácidos Graxos Insaturados , Humanos
12.
PLoS One ; 16(12): e0261783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972124

RESUMO

Obesity promotes type 2 diabetes and cardiometabolic pathologies. Vertical sleeve gastrectomy (VSG) is used to treat obesity resulting in long-term weight loss and health improvements that precede weight loss; however, the mechanisms underlying the immediate benefits remain incompletely understood. Because adipose plays a crucial role in energy homeostasis and utilization, we hypothesized that VSG exerts its influences, in part, by modulating adipose functional states. We applied single-cell ATAC sequencing and lipid profiling to inguinal and epididymal adipose depots from mice that received sham surgery or VSG. We observed depot-specific cellular composition and chromatin accessibility patterns that were altered by VSG. Specifically, accessibility at Scd1, a fatty acid desaturase, was substantially reduced after VSG in mature adipocytes of inguinal but not epididymal depots. This was accompanied by reduced accumulation of SCD1-produced unsaturated fatty acids. Given these findings and reports that reductions in Scd1 attenuate obesity and insulin resistance our results suggest VSG exerts its beneficial effects through an inguinal depot-specific reduction of SCD1 activity.


Assuntos
Cromatina , Diabetes Mellitus Tipo 2 , Animais , Cirurgia Bariátrica , Gastrectomia , Camundongos , Redução de Peso
13.
Artigo em Inglês | MEDLINE | ID: mdl-34303883

RESUMO

PURPOSE: Plasticity in fatty acid metabolism is increasingly recognized as a major feature influencing cancer progression and efficacy of treatments. Estrogen receptor positive MCF7 human breast cancer cells have long been known to have no FADS2-mediated Δ6-desaturase activity. Our objective was to examine the effect of estrogen and the "antiestrogen" aromatase inhibitor letrozole, on Δ5- and Δ6-desaturase synthesized fatty acids in vitro. METHODS: Eicosa-11,14-dienoic acid (20:2n-6), a known substrate for both FADS1 and FADS2, was used as a sentinel of relative FADS2 and FADS1 activity. MCF7 cells and four additional estrogen responsive wild type cell lines (HepG2, SK-N-SH, Y79 and Caco2) were studied. FAME were quantified by GC-FID and structures identified by GCCACI-MS/MS. RESULTS: In all five cell lines, estrogen caused a dose dependent decrease in sciadonic acid (5,11,14-20:3, ScA) via apparent inhibition of FADS1 activity, and had no effect on FADS2 catalyzed synthesis of dihomo-gamma linolenic acid (8,11,14-20:3; DGLA). In MCF7 cells, letrozole caused a dose dependent increase in FADS2-catalyzed DGLA synthesis, which plateaued in SK-N-SH cells. CONCLUSION: Letrozole restores Δ6-desaturase mediated synthesis of the anti-inflammatory PGE1-precursor DGLA in vitro and is the first endocrine-active agent to have opposing effects on FADS1 and FADS2 catalyzed activities.


Assuntos
Inibidores da Aromatase/farmacologia , Dessaturase de Ácido Graxo Delta-5/efeitos dos fármacos , Estrogênios/farmacologia , Ácidos Graxos Dessaturases/efeitos dos fármacos , Letrozol/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Dessaturase de Ácido Graxo Delta-5/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Células Hep G2 , Humanos , Células MCF-7 , Receptores de Estrogênio/metabolismo
14.
J Nutr Biochem ; 97: 108808, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34186211

RESUMO

Studies in mice using germfree animals as controls for microbial colonization have shown that the gut microbiome mediates diet-induced obesity. Such studies use diets rich in saturated fat, however, Western diets in the United States America are enriched in soybean oil, composed of unsaturated fatty acids, either linoleic or oleic acid. Here, we addressed whether the microbiome is a variable in fat metabolism in mice on a soybean oil diet. We used conventionally-raised, low-germ, and germfree mice fed for 10 weeks diets either high or low in high-linoleic-acid soybean oil as the sole source of fat. Conventional and germfree mice gained relative fat weight and all mice consumed more calories on the high fat vs. low fat soybean oil diet. Plasma fatty acid levels were generally dependent on diet, with microbial colonization status affecting iso-C18:0, C20:3n-6, C14:0, and C15:0 levels. Colonization status, but not diet, impacted levels of liver sphingolipids including ceramides, sphingomyelins, and sphinganine. Our results confirm that absorbed fatty acids are mainly a reflection of the diet and that microbial colonization influences liver sphingolipid pools regardless of diet.


Assuntos
Dieta Ocidental , Ácidos Graxos/sangue , Microbioma Gastrointestinal/fisiologia , Fígado/metabolismo , Óleo de Soja , Esfingolipídeos/metabolismo , Tecido Adiposo , Animais , Peso Corporal , Fezes/microbiologia , Vida Livre de Germes , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
PLoS Genet ; 17(3): e1009431, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760818

RESUMO

Fish oil supplementation is widely used for reducing serum triglycerides (TAGs) but has mixed effects on other circulating cardiovascular biomarkers. Many genetic polymorphisms have been associated with blood lipids, including high- and low-density-lipoprotein cholesterol (HDL-C, LDL-C), total cholesterol, and TAGs. Here, the gene-diet interaction effects of fish oil supplementation on these lipids were analyzed in a discovery cohort of up to 73,962 UK Biobank participants, using a 1-degree-of-freedom (1df) test for interaction effects and a 2-degrees-of-freedom (2df) test to jointly analyze interaction and main effects. Associations with P < 1×10-6 in either test (26,157; 18,300 unique variants) were advanced to replication in up to 7,284 participants from the Atherosclerosis Risk in Communities (ARIC) Study. Replicated associations reaching 1df P < 0.05 (2,175; 1,763 unique variants) were used in meta-analyses. We found 13 replicated and 159 non-replicated (UK Biobank only) loci with significant 2df joint tests that were predominantly driven by main effects and have been previously reported. Four novel interaction loci were identified with 1df P < 5×10-8 in meta-analysis. The lead variant in the GJB6-GJB2-GJA3 gene cluster, rs112803755 (A>G; minor allele frequency = 0.041), shows exclusively interaction effects. The minor allele is significantly associated with decreased TAGs in individuals with fish oil supplementation, but with increased TAGs in those without supplementation. This locus is significantly associated with higher GJB2 expression of connexin 26 in adipose tissue; connexin activity is known to change upon exposure to omega-3 fatty acids. Significant interaction effects were also found in three other loci in the genes SLC12A3 (HDL-C), ABCA6 (LDL-C), and MLXIPL (LDL-C), but highly significant main effects are also present. Our study identifies novel gene-diet interaction effects for four genetic loci, whose effects on blood lipids are modified by fish oil supplementation. These findings highlight the need and possibility for personalized nutrition.


Assuntos
Suplementos Nutricionais , Óleos de Peixe/farmacologia , Estudo de Associação Genômica Ampla , Metabolismo dos Lipídeos/efeitos dos fármacos , Locos de Características Quantitativas , Característica Quantitativa Herdável , Alelos , Mapeamento Cromossômico , Humanos , Lipídeos/sangue , Polimorfismo de Nucleotídeo Único , Reino Unido
16.
J Agric Food Chem ; 68(17): 4973-4980, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32298092

RESUMO

Fatty acid analysis of food lipids containing branched chain fatty acids (BCFAs) are complex because of unavoidable gas chromatography (GC) co-elution. We demonstrate a method for convenient quantitative GC coupled to novel solvent-mediated chemical ionization (CI) mass spectrometry (MS) that enables resolution of co-eluting peaks by mass. The relevant masses yield uniform responses for C14-20 normal fatty acids and BCFAs, eliminating the need for rare purified BCFA standards essential for unpredictable responses, as for electron ionization (EI). CI-tandem mass spectrometry analysis of MH+ yields fragments characteristic of the branch position. Application of the measurement to BCFAs in salami samples demonstrates consistent results for the novel method and EI-MS. A higher proportion of C17-18 BCFAs was found in beef compared to milkfat, possibly indicative of fatty acid elongation, endogenous in the beef animal. This method enables straightforward structure elucidation and quantification of food BCFAs and similar chain length normal fatty acids without purified standards.


Assuntos
Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Animais , Manteiga/análise , Bovinos , Ácidos Graxos/metabolismo , Análise de Alimentos , Carne/análise
17.
Artigo em Inglês | MEDLINE | ID: mdl-31751799

RESUMO

Branched chain fatty acids (BCFA) and linear chain/normal odd chain fatty acids (n-OCFA) are major fatty acids in human skin lipids, especially sebaceous gland (SG) wax esters. Skin lipids contain variable amounts of monounsaturated BCFA and n-OCFA, in some reports exceeding over 20% of total fatty acids. Fatty acid desaturase 2 (FADS2) codes for a multifunctional enzyme that catalyzes Δ4-, Δ6- and Δ8-desaturation towards ten unsaturated fatty acids but only one saturate, palmitic acid, converting it to 16:1n-10; FADS2 is not active towards 14:0 or 18:0. Here we test the hypothesis that FADS2 also operates on BCFA and n-OCFA. MCF-7 cancer cells stably expressing FADS1 or FADS2 along with empty vector control cells were incubated with anteiso-15:0, iso-16:0, iso-17:0, anteiso-17:0, iso-18:0, or n-17:0. BCFA were Δ6-desaturated by FADS2 as follows: iso-16:0 → iso-6Z-16:1, iso-17:0 → iso-6Z-17:1, anteiso-17:0 → anteiso-6Z-17:1 and iso-18:0 → iso-6Z-18:1. anteiso-15:0 was not desaturated in either FADS1 or FADS2 cells. n-17:0 was converted to both n-6Z-17:1 by FADS2 Δ6-desaturation and n-9Z-17:1 by SCD Δ9-desaturation. We thus establish novel FADS2-coded enzymatic activity towards BCFA and n-OCFA, expanding the number of known FADS2 saturated fatty acid substrates from one to six. Because of the importance of FADS2 in human skin, our results imply that dysfunction in activity of sebaceous FADS2 may play a role in skin abnormalities associated with skin lipids.


Assuntos
Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Humanos , Células MCF-7 , Especificidade por Substrato
18.
Br J Nutr ; 122(11): 1221-1229, 2019 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-31782377

RESUMO

The major facilitator superfamily domain 2a protein was identified recently as a lysophosphatidylcholine (LPC) symporter with high affinity for LPC species enriched with DHA (LPC-DHA). To test the hypothesis that reproductive state and choline intake influence plasma LPC-DHA, we performed a post hoc analysis of samples available through 10 weeks of a previously conducted feeding study, which provided two doses of choline (480 and 930 mg/d) to non-pregnant (n 21), third-trimester pregnant (n 26), and lactating (n 24) women; all participants consumed 200 mg of supplemental DHA and 22 % of their daily choline intake as 2H-labelled choline. The effects of reproductive state and choline intake on total LPC-DHA (expressed as a percentage of LPC) and plasma enrichments of labelled LPC and LPC-DHA were assessed using mixed and generalised linear models. Reproductive state interacted with time (P = 0·001) to influence total LPC-DHA, which significantly increased by week 10 in non-pregnant women, but not in pregnant or lactating women. Contrary to total LPC-DHA, patterns of labelled LPC-DHA enrichments were discordant between pregnant and lactating women (P < 0·05), suggestive of unique, reproductive state-specific mechanisms that result in reduced production and/or enhanced clearance of LPC-DHA during pregnancy and lactation. Regardless of the reproductive state, women consuming 930 v. 480 mg choline per d exhibited no change in total LPC-DHA but higher d3-LPC-DHA (P = 0·02), indicating that higher choline intakes favour the production of LPC-DHA from the phosphatidylethanolamine N-methyltransferase pathway of phosphatidylcholine biosynthesis. Our results warrant further investigation into the effect of reproductive state and dietary choline on LPC-DHA dynamics and its contribution to DHA status.


Assuntos
Colina/administração & dosagem , Ácidos Docosa-Hexaenoicos/sangue , Fosfatidilcolinas/sangue , Reprodução/fisiologia , Adulto , Deutério , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Feminino , Genótipo , Humanos , Lactação/sangue , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Gravidez , Terceiro Trimestre da Gravidez
19.
FEBS Lett ; 593(14): 1807-1817, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31116414

RESUMO

Saturated branched chain fatty acids (BCFA) terminating with either a prop-2-yl (iso) or sec-butan-2-yl (anteiso) group are common bioactive food components consumed from beef, fish, and dairy products. Little is known about the endogenous metabolism of BCFA and the enzymes mediating their interconversions. By using transient transfection studies, we report for the first time the substrate specificity of the elongase of very long chain fatty acids (ELOVL)1-7 toward anteiso-15:0 and iso-18:0, and assessed competition between BCFA and normal saturated fatty acids (n-SFA). ELOVL6 mediates elongation of anteiso-15:0→anteiso-17:0, while ELOVL3 is active toward iso-18:0→iso-20:0. Competition studies reveal n-16:0 competes with anteiso-15:0 for ELOVL6, while n-18:0 competes with iso-18:0 for ELOVL3. These competitions for elongation may have implications in specialized tissues where both BCFA and n-SFA are present at comparable levels.


Assuntos
Elongases de Ácidos Graxos/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Elongases de Ácidos Graxos/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Células MCF-7
20.
Food Chem Toxicol ; 127: 135-142, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30878531

RESUMO

Despite its 50-year history, the conventional diet-heart hypothesis holding that dietary saturated fats raise serum cholesterol, and with it, cardiovascular risk, remains controversial. Harsh chemical and physical treatment generates process contaminants, and refined oils raise serum and tissue cholesterol in vivo independent of saturated fat content. We developed an in vitro bioassay for rapidly assessing the influence of oils on cholesterol metabolism in the human liver HepG2 cell line, and tested it using coconut oil (CO) of various stages of refinement. CO was dissolved with dipalmitoyl phosphatidylcholine (DPPC) surfactant, solvent evaporated, and emulsified into fat-free cell culture media. After 24 h treatment cellular cholesterol and triacylglycerol increased; HMG-CoA Reductase (HMGCR) increased and CYP7A1 (cholesterol 7α-hydroxylase) decreased with sequential processing steps, deacidification, bleaching, deodorization, while fatty acid profiles were not affected. Glycerol-derived process contaminants glycidyl esters and monochloropropandiol (MCPD) increased with processing. Addition of glycidyl or MCPD to virgin CO (VCO) had similar effects to processing, while addition of phenolic antioxidants to fully refined CO reduced HMGCR and increased CYP7A1. We conclude that harsh processing creates contaminants that raise cholesterol levels in vitro, consistent with a role as a contributing atherosclerotic factor.


Assuntos
Colesterol/biossíntese , Óleo de Coco/química , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Glicerol/química , 1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/metabolismo , Ácidos Graxos/análise , Regulação da Expressão Gênica , Células Hep G2 , Homeostase/genética , Humanos , Oxirredução , Compostos Fitoquímicos/análise , Tensoativos/química , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA