Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Leukoc Biol ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920274

RESUMO

Macrophages are essential immune cells for host defense against bacterial pathogens after radiation injury. However, the role of macrophage phagocytosis in infection following radiation injury remains poorly examined. Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern that dysregulates host immune system responses such as phagocytosis. We hypothesized that radiation-induced eCIRP release impairs macrophage phagocytosis of bacteria. Adult healthy mice were exposed to 6.5-Gy total body irradiation (TBI). Primary peritoneal macrophages isolated from adult healthy mice were exposed to 6.5-Gy radiation. eCIRP-neutralizing monoclonal antibody (mAb) was added to the cell culture prior to irradiation. Bacterial phagocytosis by peritoneal macrophages was assessed using pHrodo Green-labeled E. coli 7 days after irradiation ex vivo and in vitro. Bacterial phagocytosis was also assessed after treatment with recombinant murine CIRP (rmCIRP). Rac1 and ARP2 protein expression in cell lysates and eCIRP levels in the peritoneal lavage were assessed by Western blotting. Bacterial phagocytosis by peritoneal macrophages was significantly decreased after irradiation compared to controls ex vivo and in vitro. Rac1 and ARP2 expression in the peritoneal macrophages were downregulated after TBI. TBI significantly increased eCIRP levels in the peritoneal cavity. rmCIRP significantly decreased bacterial phagocytosis in a dose-dependent manner. eCIRP mAb restored bacterial phagocytosis by peritoneal macrophages after irradiation. Ionizing radiation exposure impairs bacterial phagocytosis by macrophages after irradiation. Neutralization of eCIRP restores the phagocytic ability of macrophages after irradiation. Our findings elucidate a novel mechanism of immune dysfunction and provide a potential new therapeutic approach for limiting infection after radiation injury.

2.
Front Immunol ; 15: 1353990, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333215

RESUMO

The heightened risk of ionizing radiation exposure, stemming from radiation accidents and potential acts of terrorism, has spurred growing interests in devising effective countermeasures against radiation injury. High-dose ionizing radiation exposure triggers acute radiation syndrome (ARS), manifesting as hematopoietic, gastrointestinal, and neurovascular ARS. Hematopoietic ARS typically presents with neutropenia and thrombocytopenia, while gastrointestinal ARS results in intestinal mucosal injury, often culminating in lethal sepsis and gastrointestinal bleeding. This deleterious impact can be attributed to radiation-induced DNA damage and oxidative stress, leading to various forms of cell death, such as apoptosis, necrosis and ferroptosis. Damage-associated molecular patterns (DAMPs) are intrinsic molecules released by cells undergoing injury or in the process of dying, either through passive or active pathways. These molecules then interact with pattern recognition receptors, triggering inflammatory responses. Such a cascade of events ultimately results in further tissue and organ damage, contributing to the elevated mortality rate. Notably, infection and sepsis often develop in ARS cases, further increasing the release of DAMPs. Given that lethal sepsis stands as a major contributor to the mortality in ARS, DAMPs hold the potential to function as mediators, exacerbating radiation-induced organ injury and consequently worsening overall survival. This review describes the intricate mechanisms underlying radiation-induced release of DAMPs. Furthermore, it discusses the detrimental effects of DAMPs on the immune system and explores potential DAMP-targeting therapeutic strategies to alleviate radiation-induced injury.


Assuntos
Síndrome Aguda da Radiação , Sepse , Humanos , Receptores de Reconhecimento de Padrão/metabolismo , Síndrome Aguda da Radiação/etiologia , Morte Celular , Sepse/metabolismo
3.
Sci Rep ; 13(1): 22186, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092894

RESUMO

Human milk fat globule epidermal growth factor-factor VIII (MFG-E8) functions as a bridging molecule to promote the removal of dying cells by professional phagocytes. E. coli-expressed histidine-tagged recombinant human MFG-E8 (rhMFG-E8) is protective in various disease conditions. However, due to improper recombinant protein glycosylation, misfolding and the possibility of antigenicity, E. coli-expressed histidine-tagged rhMFG-E8 is unsuitable for human therapy. Therefore, we hypothesize that human cell-expressed, tag-free rhMFG-E8 will have suitable structural and functional properties to be developed as a safe and effective novel biologic to treat inflammatory diseases including radiation injury. We produced a new tag-free rhMFG-E8 protein by cloning the human MFG-E8 full-length coding sequence without any fusion tag into a mammalian vector and expressed it in HEK293-derived cells. The construct includes the leader sequence of cystatin S to maximize secretion of rhMFG-E8 into the culture medium. After purification and confirmation of the protein identity, we first evaluated its biological activity in vitro. We then determined its efficacy in vivo utilizing an experimental rodent model of radiation injury, i.e., partial body irradiation (PBI). HEK293 cell supernatant containing tag-free rhMFG-E8 protein was concentrated, purified, and rhMFG-E8 was verified by SDS-PAGE with the standard human MFG-E8 loaded as control and, mass spectrometry followed by analysis using MASCOT for peptide mass fingerprint. The biological activity of human cell-expressed tag-free rhMFG-E8 was superior to that of E. coli-expressed His-tagged rhMFG-E8. Toxicity, stability, and pharmacokinetic studies indicate that tag-free rhMFG-E8 is safe, highly stable after lyophilization and long-term storage, and with a terminal elimination half-life in circulation of at least 1.45 h. In the 15 Gy PBI model, a dose-dependent improvement of the 30-day survival rate was observed after tag-free rhMFG-E8 treatment with a 30-day survival of 89%, which was significantly higher than the 25% survival in the vehicle group. The dose modification factor (DMF) of tag-free rhMFG-E8 calculated using probit analysis was 1.058. Tag-free rhMFG-E8 also attenuated gastrointestinal damage after PBI suggesting it as a potential therapeutic candidate for a medical countermeasure for radiation injury. Our new human cell-expressed tag-free rhMFG-E8 has proper structural and functional properties to be further developed as a safe and effective therapy to treat victims of severe acute radiation injury.


Assuntos
Escherichia coli , Lesões por Radiação , Ratos , Animais , Humanos , Ratos Sprague-Dawley , Escherichia coli/genética , Células HEK293 , Histidina , Antígenos de Superfície/genética , Proteínas do Leite , Lesões por Radiação/tratamento farmacológico , Mamíferos
4.
Res Sq ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37293000

RESUMO

Background: Human milk fat globule epidermal growth factor-factor VIII (MFG-E8) functions as a bridging molecule to promote the removal of dying cells by professional phagocytes. E. coli-expressed histidine-tagged recombinant human MFG-E8 (rhMFG-E8) is protective in various disease conditions. However, due to improper recombinant protein glycosylation, misfolding and possible antigenicity, E. coli-expressed histidine-tagged rhMFG-E8 is unsuitable for human therapy. Therefore, we hypothesize that human cell-expressed, tag-free rhMFG-E8 can be developed as a safe and effective novel biologic to treat inflammatory diseases such as radiation injury and acute kidney injury (AKI). Methods: We produced a new tag-free rhMFG-E8 protein by cloning the human MFG-E8 full-length coding sequence without any fusion tag into a mammalian vector and expressed it in HEK293-derived cells. The construct includes the leader sequence of cystatin S to maximize secretion of rhMFG-E8 into the culture medium. After purification and confirmation of the protein identity, we first evaluated its biological activity in vitro. We then determined its efficacy in vivo utilizing two experimental rodent models of organ injury: partial body irradiation (PBI) and ischemia/reperfusion-induced AKI. Results: HEK293 cell supernatant containing tag-free rhMFG-E8 protein was concentrated, purified, and rhMFG-E8 was verified by SDS-PAGE analysis and mass spectrometry. The biological activity of human cell-expressed tag-free rhMFG-E8 was superior to that of E. coli-expressed His-tagged rhMFG-E8. Toxicity, stability, and pharmacokinetic studies indicate that tag-free rhMFG-E8 is safe, highly stable after lyophilization and long-term storage, and with an adequate half-life for therapeutic applications. In the PBI model, a dose-dependent improvement of the 30-day survival rate was observed after tag-free rhMFG-E8 treatment with a 30-day survival of 89%, which was significantly higher than the 25% survival in the vehicle group. The dose modification factor (DMF) of tag-free rhMFG-E8 was 1.073. Tag-free rhMFG-E8 also attenuated gastrointestinal damage after PBI. In the model of AKI, tag-free rhMFG-E8 treatment significantly attenuated kidney injury and inflammation, and improved the 10-day survival. Conclusion: Our new human cell-expressed tag-free rhMFG-E8 can be further developed as a safe and effective therapy to treat victims of severe acute radiation injury and patients with acute kidney injury.

5.
Front Immunol ; 14: 1151250, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168858

RESUMO

Introduction: Exposure to high-dose ionizing radiation causes tissue injury, infections and even death due to immune dysfunction. The triggering receptor expressed on myeloid cells-1 (TREM-1) has been demonstrated to critically amplify and dysregulate immune responses. However, the role of TREM-1 in radiation injury remains unknown. Extracellular cold-inducible RNA-binding protein (eCIRP), a new damage-associated molecular pattern, is released from activated or stressed cells during inflammation. We hypothesized that ionizing radiation upregulates TREM-1 expression via eCIRP release to worsen survival. Methods: RAW264.7 cells and peritoneal macrophages collected from C57BL/6 wild-type (WT) mice were exposed to 5- and 10-Gray (Gy) radiation. C57BL/6 WT and CIRP-/- mice underwent 10-Gy total body irradiation (TBI). TREM-1 expression on RAW264.7 cells and peritoneal macrophages in vitro and in vivo were evaluated by flow cytometry. eCIRP levels in cell culture supernatants and in peritoneal lavage isolated from irradiated mice were evaluated by Western blotting. We also evaluated 30-day survival in C57BL/6 WT, CIRP-/- and TREM-1-/- mice after 6.5-Gy TBI. Results: The surface protein and mRNA levels of TREM-1 in RAW264.7 cells were significantly increased at 24 h after 5- and 10-Gy radiation exposure. TREM-1 expression on peritoneal macrophages was significantly increased after radiation exposure in vitro and in vivo. eCIRP levels were significantly increased after radiation exposure in cell culture supernatants of peritoneal macrophages in vitro and in peritoneal lavage in vivo. Moreover, CIRP-/- mice exhibited increased survival after 6.5-Gy TBI compared to WT mice. Interestingly, TREM-1 expression on peritoneal macrophages in CIRP-/- mice was significantly decreased compared to that in WT mice at 24 h after 10-Gy TBI. Furthermore, 30-day survival in TREM-1-/- mice was significantly increased to 64% compared to 20% in WT mice after 6.5-Gy TBI. Conclusion: Our data indicate that ionizing radiation increases TREM-1 expression in macrophages via the release of eCIRP, and TREM-1 contributes to worse survival after total body irradiation. Thus, targeting TREM-1 could have the potential to be developed as a novel medical countermeasure for radiation injury.


Assuntos
Macrófagos , Lesões por Radiação , Animais , Camundongos , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo
6.
Am J Physiol Renal Physiol ; 324(6): F558-F567, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37102684

RESUMO

Renal ischemia-reperfusion (RIR)-induced acute kidney injury (AKI) is a common renal functional disorder with high morbidity and mortality. Stimulator of interferon (IFN) genes (STING) is the cytosolic DNA-activated signaling pathway that mediates inflammation and injury. Our recent study showed that extracellular cold-inducible RNA-binding protein (eCIRP), a newly identified damage-associated molecular pattern, activates STING and exacerbates hemorrhagic shock. H151 is a small molecule that selectively binds to STING and inhibits STING-mediated activity. We hypothesized that H151 attenuates eCIRP-induced STING activation in vitro and inhibits RIR-induced AKI in vivo. In vitro, renal tubular epithelial cells incubated with eCIRP showed increased levels of IFN-ß, STING pathway downstream cytokine, IL-6, tumor necrosis factor-α, and neutrophil gelatinase-associated lipocalin, whereas coincubation with eCIRP and H151 diminished those increases in a dose-dependent manner. In vivo, 24 h after bilateral renal ischemia-reperfusion, glomerular filtration rate was decreased in RIR-vehicle-treated mice, whereas glomerular filtration rate was unchanged in RIR-H151-treated mice. In contrast to sham, serum blood urea nitrogen, creatinine, and neutrophil gelatinase-associated lipocalin were increased in RIR-vehicle, but in RIR-H151, these levels were significantly decreased from RIR-vehicle. In contrast to sham, kidney IFN-ß mRNA, histological injury score, and TUNEL staining were also increased in RIR-vehicle, but in RIR-H151, these levels were significantly decreased from RIR-vehicle. Importantly, in contrast to sham, in a 10-day survival study, survival decreased to 25% in RIR-vehicle, but RIR-H151 had a survival of 63%. In conclusion, H151 inhibits eCIRP-induced STING activation in renal tubular epithelial cells. Therefore, STING inhibition by H151 can be a promising therapeutic intervention for RIR-induced AKI.NEW & NOTEWORTHY Renal ischemia-reperfusion (RIR)-induced acute kidney injury (AKI) is a common renal functional disorder with a high morbidity and mortality rate. Stimulator of interferon genes (STING) is the cytosolic DNA-activated signaling pathway responsible for mediating inflammation and injury. Extracellular cold-inducible RNA-binding protein (eCIRP) activates STING and exacerbates hemorrhagic shock. H151, a novel STING inhibitor, attenuated eCIRP-induced STING activation in vitro and inhibited RIR-induced AKI. H151 shows promise as a therapeutic intervention for RIR-induced AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Choque Hemorrágico , Camundongos , Animais , Lipocalina-2/metabolismo , Choque Hemorrágico/complicações , Choque Hemorrágico/metabolismo , Choque Hemorrágico/patologia , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/metabolismo , Isquemia/metabolismo , Rim/metabolismo , Reperfusão , Interferons/metabolismo , Interferons/farmacologia , Interferons/uso terapêutico , Inflamação/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/farmacologia , Proteínas de Ligação a RNA/uso terapêutico
7.
Surgery ; 172(2): 639-647, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35292178

RESUMO

BACKGROUND: Extracellular cold-inducible RNA-binding protein aggravates acute kidney injury after renal ischemia/reperfusion. Although extracellular cold-inducible RNA-binding protein activates triggering receptor expressed on myeloid cells-1, how this receptor and its antagonism with a novel peptide M3 affects acute kidney injury is poorly understood. We, therefore, hypothesize that inhibiting the extracellular cold-inducible RNA-binding protein/triggering receptor expressed on myeloid cells-1 pathway with M3 attenuates acute kidney injury. METHODS: Wild-type and triggering receptor expressed on myeloid cells-1-/- mice were subjected to bilateral 30-minute renal hilum clamping followed by reperfusion or sham. After 4 hours, wild-type mice received M3 (10 mg/kg BW) or normal saline intraperitoneally. After 24 hours, renal tissue and serum were collected for analysis. Additionally, wild-type mice were subjected to bilateral renal ischemia for 34 minutes and treated with M3 at 10 mg/kg BW or vehicle at the time of reperfusion. Survival was monitored for 10 days. RESULTS: After renal ischemia/reperfusion, triggering receptor expressed on myeloid cells-1 messenger ribonucleic acid expression increased by 9-fold in wild-type mice compared to sham mice. Wild-type mice also demonstrated significant increases in serum blood urea nitrogen, creatinine, and interleukin-6 and renal tissue levels of interleukin-6 and neutrophil gelatinase-associated lipocalin after renal ischemia/reperfusion compared to sham mice. Triggering receptor expressed on myeloid cells-1-/- mice demonstrated significant reductions in serum blood urea nitrogen, creatinine, and interleukin-6 compared to wild-type mice after renal ischemia/reperfusion. Levels of renal interleukin-6 and neutrophil gelatinase-associated lipocalin were also significantly decreased in the kidneys of triggering receptor expressed on myeloid cells-1-/- mice. Furthermore, treatment with M3 in wild-type mice significantly decreased serum and renal levels of interleukin-6 after renal ischemia/reperfusion. M3 treatment demonstrated significant reductions in renal messenger ribonucleic acid and protein levels of neutrophil gelatinase-associated lipocalin, serum blood urea nitrogen and creatinine, and histologic structural damage as well as apoptosis. Treatment with M3 also increased survival from 35% to 65% in mice with acute kidney injury. CONCLUSION: Triggering receptor expressed on myeloid cells-1 mediates the deleterious effects of extracellular cold-inducible RNA-binding protein in acute kidney injury after renal ischemia/reperfusion. The novel extracellular cold-inducible RNA-binding protein/triggering receptor expressed on myeloid cells-1 pathway antagonist, M3, attenuates acute kidney injury and has the potential to be developed as a therapeutic agent for acute kidney injury.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Receptor Gatilho 1 Expresso em Células Mieloides , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/prevenção & controle , Animais , Creatinina , Interleucina-6/metabolismo , Rim/metabolismo , Lipocalina-2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA , Proteínas de Ligação a RNA/metabolismo , Traumatismo por Reperfusão/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/antagonistas & inibidores
8.
JCI Insight ; 6(14)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34291735

RESUMO

Stimulator of IFN genes (STING) activates TANK-binding kinase 1 (TBK1) and IFN regulatory factor 3 (IRF3) to produce type I IFNs. Extracellular cold-inducible RNA-binding protein (eCIRP) is released from cells during hemorrhagic shock (HS). We hypothesized that eCIRP activates STING to induce inflammation and acute lung injury (ALI) after HS. WT and STING-/- mice underwent controlled hemorrhage by bleeding, followed by fluid resuscitation. Blood and lungs were collected at 4 hours after resuscitation. Serum ALT, AST, LDH, IL-6, and IFN-ß were significantly decreased in STING-/- mice compared with WT mice after HS. In STING-/- mice, the levels of pTBK1 and pIRF3, and expression of TNF-α, IL-6, and IL-1ß mRNAs and proteins in the lungs, were significantly decreased compared with WT HS mice. The 10-day mortality rate in STING-/- mice was significantly reduced. I.v. injection of recombinant mouse CIRP (rmCIRP) in STING-/- mice showed a significant decrease in pTBK1 and pIRF3 and in IFN-α and IFN-ß mRNAs and proteins in the lungs compared with rmCIRP-treated WT mice. Treatment of TLR4-/-, MyD88-/-, and TRIF-/- macrophages with rmCIRP significantly decreased pTBK1 and pIRF3 levels and IFN-α and IFN-ß mRNAs and proteins compared with WT macrophages. HS increases eCIRP levels, which activate STING through TLR4/MyD88/TRIF pathways to exacerbate inflammation.


Assuntos
Lesão Pulmonar Aguda/imunologia , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo , Choque Hemorrágico/imunologia , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Índice de Gravidade de Doença , Choque Hemorrágico/complicações , Choque Hemorrágico/diagnóstico , Choque Hemorrágico/patologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia
9.
J Mol Med (Berl) ; 99(10): 1373-1384, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34258628

RESUMO

Pulmonary fibrosis is a chronic debilitating condition characterized by progressive deposition of connective tissue, leading to a steady restriction of lung elasticity, a decline in lung function, and a median survival of 4.5 years. The leading causes of pulmonary fibrosis are inhalation of foreign particles (such as silicosis and pneumoconiosis), infections (such as post COVID-19), autoimmune diseases (such as systemic autoimmune diseases of the connective tissue), and idiopathic pulmonary fibrosis. The therapeutics currently available for pulmonary fibrosis only modestly slow the progression of the disease. This review is centered on the interplay of damage-associated molecular pattern (DAMP) molecules, Toll-like receptor 4 (TLR4), and inflammatory cytokines (such as TNF-α, IL-1ß, and IL-17) as they contribute to the pathogenesis of pulmonary fibrosis, and the possible avenues to develop effective therapeutics that disrupt this interplay.


Assuntos
Alarminas/metabolismo , Citocinas/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Inflamação/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Humanos , Fibrose Pulmonar Idiopática/complicações , Fibrose Pulmonar Idiopática/terapia , Inflamação/complicações , Modelos Biológicos
10.
Apoptosis ; 26(3-4): 152-162, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33713214

RESUMO

Damage-associated molecular patterns (DAMPs) are endogenous molecules which foment inflammation and are associated with disorders in sepsis and cancer. Thus, therapeutically targeting DAMPs has potential to provide novel and effective treatments. When establishing anti-DAMP strategies, it is important not only to focus on the DAMPs as inflammatory mediators but also to take into account the underlying mechanisms of their release from cells and tissues. DAMPs can be released passively by membrane rupture due to necrosis/necroptosis, although the mechanisms of release appear to differ between the DAMPs. Other types of cell death, such as apoptosis, pyroptosis, ferroptosis and NETosis, can also contribute to DAMP release. In addition, some DAMPs can be exported actively from live cells by exocytosis of secretory lysosomes or exosomes, ectosomes, and activation of cell membrane channel pores. Here we review the shared and DAMP-specific mechanisms reported in the literature for high mobility group box 1, ATP, extracellular cold-inducible RNA-binding protein, histones, heat shock proteins, extracellular RNAs and cell-free DNA.


Assuntos
Alarminas/metabolismo , Animais , Apoptose , Morte Celular , MicroRNA Circulante/metabolismo , Exocitose , Exossomos/metabolismo , Proteína HMGB1/metabolismo , Proteínas de Choque Térmico/metabolismo , Histonas/metabolismo , Humanos , Inflamação , Necrose , Sepse
11.
Front Immunol ; 12: 821154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095926

RESUMO

Background: Hepatic ischemia and reperfusion (I/R) injury is commonly associated with surgical liver resection or transplantation, and represents a major cause of liver damage and graft failure. Currently, there are no effective therapies to prevent hepatic I/R injury other than ischemic preconditioning and some preventative strategies. Previously, we have revealed the anti-inflammatory activity of a sweat gland-derived peptide, dermcidin (DCD), in macrophage/monocyte cultures. Here, we sought to explore its therapeutic potential and protective mechanisms in a murine model of hepatic I/R. Methods: Male C57BL/6 mice were subjected to hepatic ischemia by clamping the hepatic artery and portal vein for 60 min, which was then removed to initiate reperfusion. At the beginning of reperfusion, 0.2 ml saline control or solution of DCD (0.5 mg/kg BW) or DCD-C34S analog (0.25 or 0.5 mg/kg BW) containing a Cys (C)→Ser (S) substitution at residue 34 was injected via the internal jugular vein. For survival experiments, mice were subjected to additional resection to remove non-ischemic liver lobes, and animal survival was monitored for 10 days. For mechanistic studies, blood and tissue samples were collected at 24 h after the onset of reperfusion, and subjected to measurements of various markers of inflammation and tissue injury by real-time RT-PCR, immunoassays, and histological analysis. Results: Recombinant DCD or DCD-C34S analog conferred a significant protection against lethal hepatic I/R when given intravenously at the beginning of reperfusion. This protection was associated with a significant reduction in hepatic injury, neutrophilic CXC chemokine (Mip-2) expression, neutrophil infiltration, and associated inflammation. Furthermore, the administration of DCD also resulted in a significant attenuation of remote lung inflammatory injury. Mechanistically, DCD interacted with epidermal growth factor receptor (EGFR), a key regulator of liver inflammation, and significantly inhibited hepatic I/R-induced phosphorylation of EGFR as well as a downstream signaling molecule, protein kinase B (AKT). The suppression of EGFR expression by transducing Egfr-specific shRNA plasmid into macrophages abrogated the DCD-mediated inhibition of nitric oxide (NO) production induced by a damage-associated molecular pattern (DAMP), cold-inducible RNA-binding protein, CIRP. Conclusions: The present study suggests that human DCD and its analog may be developed as novel therapeutics to attenuate hepatic I/R-induced inflammatory injury possibly by impairing EGFR signaling.


Assuntos
Anti-Inflamatórios/farmacologia , Dermocidinas/farmacologia , Inflamação/etiologia , Inflamação/patologia , Hepatopatias/complicações , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/complicações , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/química , Biomarcadores , Biópsia , Citocinas/genética , Citocinas/metabolismo , Dermocidinas/química , Suscetibilidade a Doenças , Receptores ErbB/metabolismo , Humanos , Imuno-Histoquímica , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , Hepatopatias/tratamento farmacológico , Hepatopatias/etiologia , Masculino , Camundongos , Infiltração de Neutrófilos , Óxido Nítrico/metabolismo , Especificidade de Órgãos , Fosforilação , Substâncias Protetoras/química , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/etiologia
12.
Front Immunol ; 11: 2140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013905

RESUMO

Sepsis is a severe state of infection with high mortality. Pathogen-associated molecular patterns and damage-associated molecular patterns (DAMPs) initiate dysregulated systemic inflammation upon binding to pattern recognition receptors. Exosomes are endosome-derived vesicles, which carry proteins, lipids and nucleic acids, and facilitate intercellular communications. Studies have shown altered contents and function of exosomes during sepsis. In sepsis, exosomes carry increased levels of cytokines and DAMPs to induce inflammation. Exosomal DAMPs include, but are not limited to, high mobility group box 1, heat shock proteins, histones, adenosine triphosphate, and extracellular RNA. Exosomes released during sepsis have impact on multiple organs, including the lungs, kidneys, liver, cardiovascular system, and central nervous system. Here, we review the mechanisms of inflammation caused by exosomes, and their contribution to multiple organ dysfunction in sepsis.


Assuntos
Alarminas/sangue , Exossomos , Sepse/sangue , Trifosfato de Adenosina/sangue , Sistema Cardiovascular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Citocinas/sangue , Exossomos/química , Previsões , Proteínas de Choque Térmico/sangue , Proteínas de Grupo de Alta Mobilidade/sangue , Histonas/sangue , Humanos , Sistema Imunitário/efeitos dos fármacos , Inflamassomos/metabolismo , Inflamação/sangue , Inflamação/etiologia , Lipopolissacarídeos/toxicidade , Insuficiência de Múltiplos Órgãos/sangue , Insuficiência de Múltiplos Órgãos/etiologia , RNA/sangue , Sepse/imunologia , Transdução de Sinais , Receptores Toll-Like/fisiologia , Vísceras/efeitos dos fármacos
13.
Shock ; 54(5): 586-594, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32604223

RESUMO

Coronavirus disease 2019 (COVID-19) is a life-threatening respiratory illness caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its clinical presentation can vary from the asymptomatic state to acute respiratory distress syndrome (ARDS) and multi-organ dysfunction. Due to our insufficient understanding of its pathophysiology and lack of effective treatment, the morbidity and mortality of severe COVID-19 patients are high. Patients with COVID-19 develop ARDS fueled by exaggerated neutrophil influx into the lungs and cytokine storm. B-1a cells represent a unique subpopulation of B lymphocytes critical for circulating natural antibodies, innate immunity, and immunoregulation. These cells spontaneously produce natural IgM, interleukin (IL)-10, and granulocyte-monocyte colony stimulating factor (GM-CSF). Natural IgM neutralizes viruses and opsonizes bacteria, IL-10 attenuates the cytokine storm, and GM-CSF induces IgM production by B-1a cells in an autocrine manner. Indeed, B-1a cells have been shown to ameliorate influenza virus infection, sepsis, and pneumonia, all of which are similar to COVID-19. The recent discovery of B-1a cells in humans further reinforces their potentially critical role in the immune response against SARS-CoV-2 and their anticipated translational applications against viral and microbial infections. Given that B-1a cells protect against ARDS via immunoglobulin production and the anti-COVID-19 effects of convalescent plasma treatment, we recommend that studies be conducted to further examine the role of B-1a cells in the pathogenesis of COVID-19 and explore their therapeutic potential to treat COVID-19 patients.


Assuntos
Transferência Adotiva , Subpopulações de Linfócitos B/transplante , Betacoronavirus/patogenicidade , Infecções por Coronavirus/terapia , Pneumonia Viral/terapia , Transferência Adotiva/efeitos adversos , Animais , Subpopulações de Linfócitos B/imunologia , Betacoronavirus/imunologia , COVID-19 , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Interações Hospedeiro-Patógeno , Humanos , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2
14.
FASEB J ; 34(7): 9771-9786, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32506691

RESUMO

Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern (DAMP). Intercellular adhesion molecule-1 (ICAM-1) expressing neutrophils produce excessive amounts of neutrophil extracellular traps (NETs). We reveal that eCIRP generates ICAM-1+ neutrophils through triggering receptor expressed on myeloid cells-1 (TREM-1) and the ICAM-1+ neutrophils involve Rho GTPase to promote NETosis. Treatment of BMDN with rmCIRP increased the frequency of ICAM-1+ BMDN, while rmCIRP-treated TREM-1-/- BMDN or pretreatment of BMDN with TREM-1 inhibitor LP17 significantly decreased the frequency of ICAM-1+ neutrophils. The frequencies of ICAM-1+ neutrophils in blood and lungs were markedly decreased in rmCIRP-injected mice or septic mice treated with LP17. Coculture of ICAM-1-/- neutrophils or wild-type (WT) neutrophils with WT macrophages in the presence of a peptidylarginine deiminase 4 (PAD4) inhibitor reduced TNF-α and IL-6 compared to WT neutrophils treated with rmCIRP. Treatment of ICAM-1-/- neutrophils with rmCIRP resulted in reduced quantities of NETs compared to WT rmCIRP-treated neutrophils. Treatment of BMDN with rmCIRP-induced Rho activation, while blockade of ICAM-1 significantly decreased Rho activation. Inhibition of Rho significantly decreased rmCIRP-induced NET formation in BMDN. TREM-1 plays a critical role in the eCIRP-mediated increase of ICAM-1 expression in neutrophils, leading to the increased NET formation via Rho activation to exaggerate inflammation.


Assuntos
Armadilhas Extracelulares/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Neutrófilos/imunologia , Proteínas de Ligação a RNA/metabolismo , Sepse/patologia , Receptor Gatilho 1 Expresso em Células Mieloides/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Molécula 1 de Adesão Intercelular/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/metabolismo , Neutrófilos/patologia , Proteínas de Ligação a RNA/genética , Sepse/etiologia , Sepse/metabolismo , Proteínas rho de Ligação ao GTP/genética
15.
Heliyon ; 6(12): e05794, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33409388

RESUMO

BACKGROUND: Renal ischemia-reperfusion (renal I/R) injury may lead to acute kidney injury (AKI). After renal I/R, proinflammatory mediators cause immune cell infiltration and further injury. Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) is a protein involved in cell-cell and cell-matrix interactions. MSP68 is an MFG-E8-derived peptide that inhibits neutrophil adhesion and migration. Here, we evaluated whether MSP68 attenuates renal I/R injury. MATERIALS AND METHODS: Adult C57BL/6 mice were subjected to bilateral renal ischemia for 30 min followed by reperfusion and intraperitoneal administration of saline (vehicle) or MSP68 (5 mg/kg). Sham animals underwent laparotomy without renal I/R. The blood collected and studied for BUN, creatinine, and LDH by colorimetry. The kidneys were analyzed for IL-6 and TNFα by qPCR, ELISA, histological injury, and apoptosis by TUNEL. RESULTS: At 24 h after surgery, serum levels of BUN, creatinine, and LDH were markedly higher in vehicle-treated renal I/R mice than in sham mice, but significantly lower in MSP68-treated renal I/R mice. Similarly, compared to sham, renal levels of IL-6 mRNA and protein and TNFα protein were markedly higher in vehicle-treated renal I/R mice, but significantly lower in MSP68-treated renal I/R mice. Vehicle-treated renal I/R mice also had severe renal tubular histological injury, which was significantly lower in MSP68-treated renal I/R mice. Additionally, the kidneys of vehicle-treated renal I/R mice had a 93-fold increase in TUNEL-positive cells, which were reduced by 35% in mice treated with MSP68. CONCLUSION: MSP68 has the potential to be developed as novel therapeutic agent for patients with AKI.

16.
Sci Rep ; 8(1): 3052, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434211

RESUMO

Cold-inducible RNA-binding protein (CIRP) is a novel sepsis inflammatory mediator and C23 is a putative CIRP competitive inhibitor. Therefore, we hypothesized that C23 can ameliorate sepsis-associated injury to the lungs and kidneys. First, we confirmed that C23 dose-dependently inhibited TNF-α release, IκBα degradation, and NF-κB nuclear translocation in macrophages stimulated with CIRP. Next, we observed that male C57BL/6 mice treated with C23 (8 mg/kg BW) at 2 h after cecal ligation and puncture (CLP) had lower serum levels of LDH, ALT, IL-6, TNF-α, and IL-1ß (reduced by ≥39%) at 20 h after CLP compared with mice treated with vehicle. C23-treated mice also had improved lung histology, less TUNEL-positive cells, lower serum levels of creatinine (34%) and BUN (26%), and lower kidney expression of NGAL (50%) and KIM-1 (86%). C23-treated mice also had reduced lung and kidney levels of IL-6, TNF-α, and IL-1ß. E-selectin and ICAM-1 mRNA was significantly lower in C23-treated mice. The 10-day survival after CLP of vehicle-treated mice was 55%, while that of C23-treated mice was 85%. In summary, C23 decreased systemic, lung, and kidney injury and inflammation, and improved the survival rate after CLP, suggesting that it may be developed as a new treatment for sepsis.


Assuntos
Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/uso terapêutico , Sepse/terapia , Injúria Renal Aguda/terapia , Animais , Proteínas e Peptídeos de Choque Frio/metabolismo , Temperatura Baixa , Inflamação/terapia , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Rim/patologia , Pulmão/patologia , Lesão Pulmonar/terapia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Fosfoproteínas/metabolismo , Células RAW 264.7 , Sepse/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Nucleolina
17.
J Trauma Acute Care Surg ; 83(4): 690-697, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28930962

RESUMO

BACKGROUND: Hemorrhagic shock (HS) is an important cause of mortality. HS is associated with an elevated incidence of acute lung injury and acute respiratory distress syndrome, significantly contributing to HS morbidity and mortality. Cold-inducible RNA-binding protein (CIRP) is released into the circulation during HS and can cause lung injury. C23 is a CIRP-derived oligopeptide that binds with high affinity to the CIRP receptor and inhibits CIRP-induced phagocyte secretion of TNF-α. This study was designed to determine whether C23 is able to attenuate HS-associated lung injury. METHODS: C57BL/6 mice were subjected to controlled hemorrhage leading to a mean arterial pressure of 25 ± 3 mm Hg for 90 minutes. Mice were then volume-resuscitated for 30 minutes with normal saline solution alone (vehicle) or plus adjuvant treatment with C23 (8 mg/kg BW). At 4.5 hours after resuscitation, the blood and lungs were harvested. RESULTS: Serum levels of organ injury markers lactate dehydrogenase, aspartate aminotransferase were significantly elevated in hemorrhaged mice receiving vehicle and were reduced by 51.3% and 52.2% in mice adjuvantly treated with C23, respectively. Similarly, lung mRNA levels of IL-1ß, TNF-α, and IL-6, and lung myeloperoxidase activity were elevated after HS and reduced by 66.1%, 54.4%, 69.7%, and 24.3%, respectively, in mice treated with C23. Adjuvant treatment with C23 also decreased the lung histology score by 33.9%, lung extravasation of albumin carrying Evans blue dye by 36.8%, and the protein level of intercellular adhesion molecule-1, and indicator of vascular endothelial cell activation, by 40.3%. CONCLUSION: Together, these results indicate that adjuvant treatment with the CIRP-derived oligopeptide C23 is able to improve lung inflammation and vascular endothelial activation secondary to HS, lending support to the development of CIRP-targeting adjuvant treatments to minimize lung injury after HS.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/terapia , Oligopeptídeos , Proteínas de Ligação a RNA , Choque Hemorrágico/complicações , Choque Hemorrágico/terapia , Animais , Temperatura Baixa , Citocinas/sangue , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Physiol Genomics ; 49(4): 238-242, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28258078

RESUMO

Magnesium has been suggested to have anti-inflammatory properties in short-term, mostly in vitro studies. To examine the effect of dietary magnesium modifications in arthritis severity and joint damage DA rats were placed on one of three diet regimens before the induction of autoimmune pristane-induced arthritis (PIA): a 4 wk low-magnesium diet, normal diet, and a magnesium-supplemented diet. The diets were switched to a normal diet 14 days after the induction of PIA (typical time of disease onset). Arthritis severity was scored for 38 days, and joints were examined by histology and quantitative PCR for proinflammatory genes. Rats on the low-magnesium diet were significantly and reproducibly protected and had 70% lower median arthritis severity score, with preservation of normal joint histology without erosive changes. Rats on the normal or magnesium-supplemented diets were not protected and developed equally severe and erosive disease. While the dietary modifications were at disease onset (day 14 postinduction), the protective effect of the short-term low-magnesium diet persisted, suggesting a lasting effect on a critical pathogenic pathway. Rats on the low-magnesium diet had significant reduction in synovial tissue expression of IL-6, RORA, and RORC, which are genes required for the development of Th17 T cells. This study revealed a novel role for dietary magnesium in the regulation of autoimmune arthritis and opens new possibilities for the treatment of autoimmune diseases such as rheumatoid arthritis and psoriatic arthritis with short courses of dietary or drug-induced modulations of magnesium levels.


Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Magnésio/uso terapêutico , Animais , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Ratos , Membrana Sinovial/metabolismo , Células Th17/metabolismo
19.
Physiol Genomics ; 45(22): 1109-22, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24046282

RESUMO

Little is known about the genes regulating disease severity and joint damage in rheumatoid arthritis (RA). In the present study we analyzed the gene expression characteristics of synovial tissues from four different strains congenic for non-MHC loci that develop mild and nonerosive arthritis compared with severe and erosive DA rats. DA.F344(Cia3d), DA.F344(Cia5a), DA.ACI(Cia10), and DA.ACI(Cia25) rats developed mild arthritis compared with DA. We found 685 genes with significantly different expression between congenics and DA, independent of the specific congenic interval, suggesting that these genes represent a new nongenetic core group of mediators of arthritis severity. This core group includes genes not previously implicated or with unclear role in arthritis severity, such as Tnn, Clec4m, and Spond1 among others, increased in DA. The core genes also included Scd1, Selenbp1, and Slc7a10, increased in congenics. Genes implicated in nuclear receptor activity, xenobiotic and lipid metabolism were also increased in the congenics, correlating with protection. Several disease mediators were among the core genes reduced in congenics, including IL-6, IL-17, and Ccl2. Analyses of upstream regulators (genes, pathways, or chemicals) suggested reduced activation of Stat3 and TLR-related genes and chemicals in congenics. Additionally, cigarette smoking was among the upstream regulators activated in DA, while p53 was an upstream regulator activated in congenics. We observed congenic-specific differential expression and detection in each individual strain. In conclusion, this new nongenetically regulated core genes of disease severity or protection in arthritis should provide new insight into critical pathways and potential new environmental risk factor for arthritis.


Assuntos
Artrite Reumatoide/metabolismo , Cápsula Articular/metabolismo , Animais , Animais Congênicos , Artrite Reumatoide/genética , Artrite Reumatoide/fisiopatologia , Expressão Gênica , Masculino , Ratos , Especificidade da Espécie
20.
Mol Med ; 19: 276-85, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23979709

RESUMO

Chemokines facilitate the recruitment of inflammatory cells into tissues, contributing to target organ injury in a wide range of inflammatory and autoimmune diseases. Targeting either single chemokines or chemokine receptors alters the progression of disease in animal models of rheumatoid arthritis and lupus with varying degrees of efficacy but clinical trials in humans have been less successful. Given the redundancy of chemokine-chemokine receptor interactions, targeting of more than one chemokine may be required to inhibit active inflammatory disease. To test the effects of multiple-chemokine blockade in inflammation, we generated an adenovirus expressing bovine herpesvirus 1 glycoprotein G (BHV1gG), a viral chemokine antagonist that binds to a wide spectrum of murine and human chemokines, fused to the Fc portion of murine IgG2a. Administration of the adenovirus significantly inhibited thioglycollate-induced migration of polymorphonuclear leukocytes into the peritoneal cavity of BALB/c mice and reduced both clinical severity and articular damage in K/BxN serum transfer-induced arthritis. However, treatment with BHV1gG-Ig fusion protein did not prevent monocyte infiltration into the peritoneum in the thioglycollate model and did not prevent renal monocyte infiltration or nephritis in lupus-prone NZB/W mice. These observations suggest that the simultaneous inhibition of multiple chemokines by BHV1gG has the potential to interfere with acute inflammatory responses mediated by polymorphonuclear leukocytes, but is less effective in chronic inflammatory disease mediated by macrophages.


Assuntos
Movimento Celular/imunologia , Inflamação/imunologia , Monócitos/imunologia , Neutrófilos/imunologia , Proteínas Virais/imunologia , Animais , Artrite Experimental/imunologia , Artrite Experimental/prevenção & controle , Cálcio/imunologia , Cálcio/metabolismo , Bovinos , Movimento Celular/efeitos dos fármacos , Quimiocinas/metabolismo , Herpesvirus Bovino 1/genética , Soros Imunes/imunologia , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Inflamação/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos , Camundongos SCID , Monócitos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Ligação Proteica , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Tioglicolatos/imunologia , Tioglicolatos/farmacologia , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA