Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Exp Hematol ; : 104252, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876253

RESUMO

Transcriptional mechanisms establish and maintain complex genetic and protein networks to control cell state transitions. The hematopoietic transcription factor GATA1 is a master regulator of erythropoiesis and megakaryopoiesis, and human GATA1genetic variants cause anemia and megakaryoblastic leukemia. Multiomic analyses revealed that GATA1 controls expression of transporters and metabolic enzymes that dictate intracellular levels of endogenous small molecules, including heme, metal ions, and sphingolipids. Besides its canonical function as a hemoglobin component, heme facilitates or antagonizes GATA1 function to regulate erythropoiesis via mechanisms dependent or independent of the heme-binding transcription factor BTB domain and CNC homology 1 (BACH1). GATA1 regulates the expression of genes encoding heme biosynthetic enzymes and BACH1. GATA1 maintains homeostasis of bioactive ceramides during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Disrupting ceramide homeostasis impairs critical cytokine signaling and is detrimental to erythroid cells. During erythroid maturation, GATA1 induces a zinc transporter switch that favors export versus import, thus dictating the intracellular zinc level, erythroblast survival, and differentiation. In aggregate, these studies support an emerging paradigm in which GATA factor-dependent transcriptional mechanisms control the intracellular levels of endogenous small molecules and small molecule-dependent feedback loops that serve as vital effectors of transcription factor activity, genome function, and cell state transitions.

2.
Proc Natl Acad Sci U S A ; 121(10): e2317147121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422019

RESUMO

Mutations in genes encoding transcription factors inactivate or generate ectopic activities to instigate pathogenesis. By disrupting hematopoietic stem/progenitor cells, GATA2 germline variants create a bone marrow failure and leukemia predisposition, GATA2 deficiency syndrome, yet mechanisms underlying the complex phenotypic constellation are unresolved. We used a GATA2-deficient progenitor rescue system to analyze how genetic variation influences GATA2 functions. Pathogenic variants impaired, without abrogating, GATA2-dependent transcriptional regulation. Variants promoted eosinophil and repressed monocytic differentiation without regulating mast cell and erythroid differentiation. While GATA2 and T354M required the DNA-binding C-terminal zinc finger, T354M disproportionately required the N-terminal finger and N terminus. GATA2 and T354M activated a CCAAT/Enhancer Binding Protein-ε (C/EBPε) enhancer, creating a feedforward loop operating with the T-cell Acute Lymphocyte Leukemia-1 (TAL1) transcription factor. Elevating C/EBPε partially normalized hematopoietic defects of GATA2-deficient progenitors. Thus, pathogenic germline variation discriminatively spares or compromises transcription factor attributes, and retaining an obligate enhancer mechanism distorts a multilineage differentiation program.


Assuntos
Leucemia , Sequências Reguladoras de Ácido Nucleico , Humanos , Diferenciação Celular/genética , Genótipo , Células-Tronco Hematopoéticas , Fator de Transcrição GATA2/genética
3.
Blood Adv ; 8(1): 80-92, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38029365

RESUMO

ABSTRACT: GATA binding protein 2 (GATA2) is a conserved zinc finger transcription factor that regulates the emergence and maintenance of complex genetic programs driving development and function of hematopoietic stem and progenitor cells (HSPCs). Patients born with monoallelic GATA2 mutations develop myelodysplastic neoplasm (MDS) and acute myeloid leukemia (AML), whereas acquired GATA2 mutations are reported in 3% to 5% of sporadic AML cases. The mechanisms by which aberrant GATA2 activity promotes MDS and AML are incompletely understood. Efforts to understand GATA2 in basic biology and disease will be facilitated by the development of broadly efficacious antibodies recognizing physiologic levels of GATA2 in diverse tissue types and assays. Here, we purified a polyclonal anti-GATA2 antibody and generated multiple highly specific anti-GATA2 monoclonal antibodies, optimized them for immunohistochemistry on patient bone marrow bioosy samples, and analyzed GATA2 expression in adults with healthy bone marrow, MDS, and acute leukemia. In healthy bone marrow, GATA2 was detected in mast cells, subsets of CD34+ HSPCs, E-cadherin-positive erythroid progenitors, and megakaryocytes. In MDS, GATA2 expression correlates with bone marrow blast percentage, positively correlates with myeloid dysplasia and complex cytogenetics, and is a nonindependent negative predictor of overall survival. In acute leukemia, the percent of GATA2+ blasts closely associates with myeloid lineage, whereas a subset of lymphoblastic and undifferentiated leukemias with myeloid features also express GATA2. However, the percent of GATA2+ blasts in AML is highly variable. Elevated GATA2 expression in AML blasts correlates with peripheral neutropenia and complex AML cytogenetics but, unlike in MDS, does not predict survival.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Adulto , Humanos , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Medula Óssea/metabolismo , Doença Aguda , Análise Citogenética
4.
Nat Commun ; 14(1): 7262, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945603

RESUMO

Transcriptional mechanisms controlling developmental processes establish and maintain proteomic networks, which can govern the levels of intracellular small molecules. Although dynamic changes in bioactive small molecules can link transcription factor and genome activity with cell state transitions, many mechanistic questions are unresolved. Using quantitative lipidomics and multiomics, we discover that the hematopoietic transcription factor GATA1 establishes ceramide homeostasis during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Inhibiting a GATA1-induced sphingolipid biosynthetic enzyme, delta(4)-desaturase, or disrupting ceramide homeostasis with cell-permeable dihydroceramide or ceramide is detrimental to erythroid, but not myeloid, progenitor activity. Coupled with genetic editing-based rewiring of the regulatory circuitry, we demonstrate that ceramide homeostasis commissions vital stem cell factor and erythropoietin signaling by opposing an inhibitory protein phosphatase 2A-dependent, dual-component mechanism. Integrating bioactive lipids as essential components of GATA factor mechanisms to control cell state transitions has implications for diverse cell and tissue types.


Assuntos
Citocinas , Redes Reguladoras de Genes , Citocinas/genética , Proteômica , Fator de Transcrição GATA1/metabolismo , Diferenciação Celular/genética , Ceramidas , Homeostase
5.
Blood Adv ; 7(24): 7564-7575, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-37871305

RESUMO

Germline genetic variants alter the coding and enhancer sequences of GATA2, which encodes a master regulator of hematopoiesis. The conserved murine Gata2 enhancer (+9.5) promotes hematopoietic stem cell (HSC) genesis during embryogenesis. Heterozygosity for a single-nucleotide Ets motif variant in the human enhancer creates a bone marrow failure and acute myeloid leukemia predisposition termed GATA2 deficiency syndrome. The homozygous murine variant attenuates chemotherapy- and transplantation-induced hematopoietic regeneration, hematopoietic stem and progenitor cell (HSPC) response to inflammation, and HSPC mobilization with the therapeutic mobilizer granulocyte colony-stimulating factor (G-CSF). Because a Gata2 +9.5 variant attenuated G-CSF-induced HSPC expansion and mobilization, and HSC transplantation therapies require efficacious mobilization, we tested whether variation affects mechanistically distinct mobilizers or only those operating through select pathways. In addition to affecting G-CSF activity, Gata2 variation compromised IL-8/CXCR2- and VLA-4/VCAM1-induced mobilization. Although the variation did not disrupt HSPC mobilization mediated by plerixafor, which functions through CXCR4/CXCL12, homozygous and heterozygous variation attenuated mobilization efficacy of the clinically used plerixafor/G-CSF combination. The influence of noncoding variation on HSPC mobilization efficacy and function is important clinically because comprehensive noncoding variation is not commonly analyzed in patients. Furthermore, our mobilization-defective system offers unique utility for elucidating fundamental HSPC mechanisms.


Assuntos
Fator de Transcrição GATA2 , Transplante de Células-Tronco Hematopoéticas , Compostos Heterocíclicos , Animais , Camundongos , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Variação Genética , Fator Estimulador de Colônias de Granulócitos/genética , Fator Estimulador de Colônias de Granulócitos/farmacologia , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Compostos Heterocíclicos/farmacologia
6.
J Clin Invest ; 133(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37847561

RESUMO

We previously demonstrated that a subset of acute myeloid leukemia (AML) patients with concurrent RAS pathway and TP53 mutations have an extremely poor prognosis and that most of these TP53 mutations are missense mutations. Here, we report that, in contrast to the mixed AML and T cell malignancy that developed in NrasG12D/+ p53-/- (NP-/-) mice, NrasG12D/+ p53R172H/+ (NPmut) mice rapidly developed inflammation-associated AML. Under the inflammatory conditions, NPmut hematopoietic stem and progenitor cells (HSPCs) displayed imbalanced myelopoiesis and lymphopoiesis and mostly normal cell proliferation despite MEK/ERK hyperactivation. RNA-Seq analysis revealed that oncogenic NRAS signaling and mutant p53 synergized to establish an NPmut-AML transcriptome distinct from that of NP-/- cells. The NPmut-AML transcriptome showed GATA2 downregulation and elevated the expression of inflammatory genes, including those linked to NF-κB signaling. NF-κB was also upregulated in human NRAS TP53 AML. Exogenous expression of GATA2 in human NPmut KY821 AML cells downregulated inflammatory gene expression. Mouse and human NPmut AML cells were sensitive to MEK and NF-κB inhibition in vitro. The proteasome inhibitor bortezomib stabilized the NF-κB-inhibitory protein IκBα, reduced inflammatory gene expression, and potentiated the survival benefit of a MEK inhibitor in NPmut mice. Our study demonstrates that a p53 structural mutant synergized with oncogenic NRAS to promote AML through mechanisms distinct from p53 loss.


Assuntos
Leucemia Mieloide Aguda , NF-kappa B , Proteína Supressora de Tumor p53 , Animais , Humanos , Camundongos , Mutação com Ganho de Função , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Mutação , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/genética
7.
Blood Adv ; 7(17): 4970-4982, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37276450

RESUMO

Metabolic products of the microbiota can alter hematopoiesis. However, the contribution and site of action of bile acids is poorly understood. Here, we demonstrate that the secondary bile acids, deoxycholic acid (DCA) and lithocholic acid (LCA), increase bone marrow myelopoiesis. Treatment of bone marrow cells with DCA and LCA preferentially expanded immunophenotypic and functional colony-forming unit-granulocyte and macrophage (CFU-GM) granulocyte-monocyte progenitors (GMPs). DCA treatment of sorted hematopoietic stem and progenitor cells (HSPCs) increased CFU-GMs, indicating that direct exposure of HSPCs to DCA sufficed to increase GMPs. The vitamin D receptor (VDR) was required for the DCA-induced increase in CFU-GMs and GMPs. Single-cell RNA sequencing revealed that DCA significantly upregulated genes associated with myeloid differentiation and proliferation in GMPs. The action of DCA on HSPCs to expand GMPs in a VDR-dependent manner suggests microbiome-host interactions could directly affect bone marrow hematopoiesis and potentially the severity of infectious and inflammatory disease.


Assuntos
Ácidos e Sais Biliares , Mielopoese , Receptores de Calcitriol , Ácidos e Sais Biliares/metabolismo , Células Progenitoras Mieloides , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo
8.
Curr Opin Hematol ; 30(4): 117-123, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37254854

RESUMO

PURPOSE OF REVIEW: Recent discoveries have provided evidence for mechanistic links between the master regulator of hematopoiesis GATA2 and the key component of interferon and innate immunity signaling pathways, interferon-regulatory factor-8 (IRF8). These links have important implications for the control of myeloid differentiation in physiological and pathological states. RECENT FINDINGS: GATA2 deficiency resulting from loss of the Gata2 -77 enhancer in progenitors triggers an alarm that instigates the transcriptional induction of innate immune signaling and distorts a myeloid differentiation program. This pathological alteration renders progenitors hyperresponsive to interferon γ, toll-like receptor and interleukin-6 signaling and impaired in granulocyte-macrophage colony-stimulating factor signaling. IRF8 upregulation in -77-/- progenitors promotes monocyte and dendritic cell differentiation while suppressing granulocytic differentiation. As PU.1 promotes transcription of Irf8 and other myeloid and B-lineage genes, GATA2-mediated repression of these genes opposes the PU.1-dependent activating mechanism. SUMMARY: As GATA2 deficiency syndrome is an immunodeficiency disorder often involving myelodysplastic syndromes and acute myeloid leukemia, elucidating how GATA2 commissions and decommissions genome activity and developmental regulatory programs will unveil mechanisms that go awry when GATA2 levels and/or activities are disrupted.


Assuntos
Deficiência de GATA2 , Humanos , Diferenciação Celular/genética , Fator de Transcrição GATA2/genética , Imunidade Inata , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Interferons/metabolismo , Animais
9.
iScience ; 26(4): 106297, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36950124

RESUMO

Innate immune signaling protects against pathogens, controls hematopoietic development, and functions in oncogenesis, yet the relationship between these mechanisms is undefined. Downregulating the GATA2 transcription factor in fetal hematopoietic progenitor cells upregulates genes encoding innate immune regulators, increases Interferon-γ (IFNγ) signaling, and disrupts differentiation. We demonstrate that deletion of an enhancer that confers GATA2 expression in fetal progenitors elevated Toll-like receptor (TLR) TLR1/2 and TLR2/6 expression and signaling. Rescue by expressing GATA2 downregulated elevated TLR signaling. IFNγ amplified TLR1/2 and TLR2/6 signaling in GATA2-deficient progenitors, synergistically activating cytokine/chemokine genes and elevating cytokine/chemokine production in myeloid cell progeny. Genomic analysis of how innate immune signaling remodels the GATA2-deficient progenitor transcriptome revealed hypersensitive responses at innate immune genes harboring motifs for signal-dependent transcription factors and factors not linked to these mechanisms. As GATA2 establishes a transcriptome that constrains innate immune signaling, insufficient GATA2 renders fetal progenitor cells hypersensitive to innate immune signaling.

10.
J Clin Invest ; 133(7)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36809258

RESUMO

Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer-mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter-zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.


Assuntos
Deficiência de GATA2 , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Deficiência de GATA2/genética , Interleucina-6/genética , Hematopoese/genética , Expressão Gênica , Dedos de Zinco/genética , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo
11.
Blood Adv ; 7(4): 586-601, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36161469

RESUMO

The RNA-regulatory exosome complex (EC) posttranscriptionally and cotranscriptionally processes and degrades RNAs in a context-dependent manner. Although the EC functions in diverse cell types, its contributions to stem and progenitor cell development are not well understood. Previously, we demonstrated that the transcriptional regulator of erythrocyte development, GATA1, represses EC subunit genes, and the EC maintains erythroid progenitors in vitro. To determine if this mechanism operates in vivo, we used the hematopoietic-specific Vav1-Cre and "conditional by inversion" mouse system to ablate Exosc3, encoding an EC structural subunit. Although Exosc3C/C Cre+ embryos developed normally until embryonic day 14.5, Exosc3 ablation was embryonic lethal and severely reduced erythromyeloid progenitor activity. RNA sequencing analysis of Exosc3-ablated burst-forming unit-erythroid revealed elevated transcripts encoding multiple proapoptotic factors, and the mutant erythroid progenitors exhibited increased apoptosis. We propose that the EC controls an ensemble of apoptosis-regulatory RNAs, thereby promoting erythroid progenitor survival and developmental erythropoiesis in vivo.


Assuntos
Células Precursoras Eritroides , Exossomos , Camundongos , Animais , Complexo Multienzimático de Ribonucleases do Exossomo , Apoptose , RNA
12.
Exp Hematol ; 118: 21-30, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481429

RESUMO

Although establishment and maintenance of mitochondria are essential for the production of massive amounts of heme in erythroblasts, mitochondria must be degraded upon terminal differentiation to red blood cells (RBCs), thus creating a biphasic regulatory process. Previously, we reported that iron deficiency in mice promotes mitochondrial retention in RBCs, suggesting that a proper amount of iron and/or heme is necessary for the degradation of mitochondria during erythroblast maturation. Because the transcription factor GATA1 regulates autophagy in erythroid cells, which involves mitochondrial clearance (mitophagy), we investigated the relationship between iron or heme and mitophagy by analyzing the expression of genes related to GATA1 and autophagy and the impact of iron or heme restriction on the amount of mitochondria. We found that heme promotes the expression of GATA1-regulated mitophagy-related genes and the induction of mitophagy. GATA1 might induce the expression of the autophagy-related genes Atg4d and Stk11 for mitophagy through a heme-dependent mechanism in murine erythroleukemia (MEL) cells and a genetic rescue system with G1E-ER-GATA1 erythroblast cells derived from Gata1-null murine embryonic stem cells. These results provide evidence for a biphasic mechanism in which mitochondria are essential for heme generation, and the heme generated during differentiation promotes mitophagy and mitochondrial disposal. This mechanism provides a molecular framework for understanding this fundamentally important cell biological process.


Assuntos
Heme , Mitofagia , Camundongos , Animais , Heme/metabolismo , Diferenciação Celular , Células Eritroides/metabolismo , Ferro/metabolismo
14.
Int J Hematol ; 116(2): 174-181, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35776402

RESUMO

The hematopoietic transcription factor GATA1 induces heme accumulation during erythropoiesis by directly activating genes mediating heme biosynthesis. In addition to its canonical functions as a hemoglobin prosthetic group and enzyme cofactor, heme regulates gene expression in erythroid cells both transcriptionally and post-transcriptionally. Heme binding to the transcriptional repressor BACH1 triggers its proteolytic degradation. In heme-deficient cells, BACH1 accumulates and represses transcription of target genes, including α- and ß-like globin genes, preventing the accumulation of cytotoxic free globin chains. A recently described BACH1-independent mechanism of heme-dependent transcriptional regulation is associated with a DNA motif termed heme-regulated motif (HERM), which resides at the majority of loci harboring heme-regulated chromatin accessibility sites. Progress on these problems has led to a paradigm in which cell type-specific transcriptional mechanisms determine the expression of enzymes mediating the synthesis of small molecules, which generate feedback loops, converging upon the transcription factor itself and the genome. This marriage between transcription factors and the small molecules that they control is predicted to be a canonical attribute of regulatory networks governing cell state transitions such as differentiation in the hematopoietic system and more broadly.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Heme , Fatores de Transcrição de Zíper de Leucina Básica/genética , Células Eritroides , Globinas/metabolismo , Humanos , Fatores de Transcrição/metabolismo
15.
Blood Adv ; 6(5): 1464-1473, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35008108

RESUMO

Cell type-specific transcription factors control stem and progenitor cell transitions by establishing networks containing hundreds of genes and proteins. Network complexity renders it challenging to discover essential versus modulatory or redundant components. This scenario is exemplified by GATA2 regulation of hematopoiesis during embryogenesis. Loss of a far upstream Gata2 enhancer (-77) disrupts the GATA2-dependent transcriptome governing hematopoietic progenitor cell differentiation. The aberrant transcriptome includes the transcription factor interferon regulatory factor 8 (IRF8) and a host of innate immune regulators. Mutant progenitors lose the capacity to balance production of diverse hematopoietic progeny. To elucidate mechanisms, we asked if IRF8 is essential, contributory, or not required. Reducing Irf8, in the context of the -77 mutant allele, reversed granulocytic deficiencies and the excessive accumulation of dendritic cell committed progenitors. Despite many dysregulated components that control vital transcriptional, signaling, and immune processes, the aberrant elevation of a single transcription factor deconstructed the differentiation program.


Assuntos
Deficiência de GATA2 , Diferenciação Celular/genética , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo , Hematopoese/genética , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo
16.
Blood Adv ; 6(4): 1095-1099, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516632

RESUMO

Mammalian GATA2 gene encodes a dual zinc finger transcription factor, which is essential for hematopoietic stem cell (HSC) generation in the aorta, gonad, mesonephros (AGM) region, HSC self-renewal, and specification of progenitor cell fates. Previously, we demonstrated that Gata2 expression in AGM is controlled by its intronic +9.5 enhancer. Gata2 +9.5 deficiency removes the E-box motif and the GATA site and depletes fetal liver HSCs. However, whether this enhancer has an essential role in regulating adult hematopoiesis has not been established. Here, we evaluate Gata2 +9.5 enhancer function in adult hematopoiesis. +9.5+/- bone marrow cells displayed reduced T cell reconstitution in a competitive transplant assay. Donor-derived analysis demonstrated a previously unrecognized function of the +9.5 enhancer in T cell development at the lymphoid-primed multipotent progenitor stage. Moreover, +9.5+/- adult HSCs displayed increased apoptosis and reduced long-term self-renewal capability in comparison with wild-type (WT) HSCs. These phenotypes were more moderate than those of Gata2+/- HSCs. Consistent with the phenotypic characterization, Gata2 expression in +9.5+/- LSKs was moderately higher than that in Gata2+/- LSKs, but lower than that in WT LSKs. Our data suggest that +9.5 deficiency compromises, without completely abrogating, Gata2 expression in adult HSCs.


Assuntos
Hematopoese , Mesonefro , Animais , Diferenciação Celular/genética , Autorrenovação Celular/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Mamíferos
17.
Sci Adv ; 7(50): eabk3521, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890222

RESUMO

Human genetic variants are classified on the basis of potential pathogenicity to guide clinical decisions. However, mechanistic uncertainties often preclude definitive categorization. Germline coding and enhancer variants within the hematopoietic regulator GATA2 create a bone marrow failure and leukemia predisposition. The conserved murine enhancer promotes hematopoietic stem cell (HSC) genesis, and a single-nucleotide human variant in an Ets motif attenuates chemotherapy-induced hematopoietic regeneration. We describe "conditionally pathogenic" (CP) enhancer motif variants that differentially affect hematopoietic development and regeneration. The Ets motif variant functioned autonomously in hematopoietic cells to disrupt hematopoiesis. Because an epigenetically silenced normal allele can exacerbate phenotypes of a pathogenic heterozygous variant, we engineered a bone marrow failure model harboring the Ets motif variant and a severe enhancer mutation on the second allele. Despite normal developmental hematopoiesis, regeneration in response to chemotherapy, inflammation, and a therapeutic HSC mobilizer was compromised. The CP paradigm informs mechanisms underlying phenotypic plasticity and clinical genetics.

18.
Nucleic Acids Res ; 49(22): e127, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34581807

RESUMO

Single-cell transcriptome sequencing (scRNA-seq) enabled investigations of cellular heterogeneity at exceedingly higher resolutions. Identification of novel cell types or transient developmental stages across multiple experimental conditions is one of its key applications. Linear and non-linear dimensionality reduction for data integration became a foundational tool in inference from scRNA-seq data. We present multilayer graph clustering (MLG) as an integrative approach for combining multiple dimensionality reduction of multi-condition scRNA-seq data. MLG generates a multilayer shared nearest neighbor cell graph with higher signal-to-noise ratio and outperforms current best practices in terms of clustering accuracy across large-scale benchmarking experiments. Application of MLG to a wide variety of datasets from multiple conditions highlights how MLG boosts signal-to-noise ratio for fine-grained sub-population identification. MLG is widely applicable to settings with single cell data integration via dimension reduction.


Assuntos
RNA-Seq/métodos , Análise de Célula Única/métodos , Algoritmos , Animais , Análise por Conglomerados , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos
19.
Nucleic Acids Res ; 49(16): 9007-9025, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34059908

RESUMO

Cellular differentiation requires vast remodeling of transcriptomes, and therefore machinery mediating remodeling controls differentiation. Relative to transcriptional mechanisms governing differentiation, post-transcriptional processes are less well understood. As an important post-transcriptional determinant of transcriptomes, the RNA exosome complex (EC) mediates processing and/or degradation of select RNAs. During erythropoiesis, the erythroid transcription factor GATA1 represses EC subunit genes. Depleting EC structural subunits prior to GATA1-mediated repression is deleterious to erythroid progenitor cells. To assess the importance of the EC catalytic subunits Dis3 and Exosc10 in this dynamic process, we asked if these subunits function non-redundantly to control erythropoiesis. Dis3 or Exosc10 depletion in primary murine hematopoietic progenitor cells reduced erythroid progenitors and their progeny, while sparing myeloid cells. Dis3 loss severely compromised erythroid progenitor and erythroblast survival, rendered erythroblasts hypersensitive to apoptosis-inducing stimuli and induced γ-H2AX, indicative of DNA double-stranded breaks. Dis3 loss-of-function phenotypes were more severe than those caused by Exosc10 depletion. We innovated a genetic rescue system to compare human Dis3 with multiple myeloma-associated Dis3 mutants S447R and R750K, and only wild type Dis3 was competent to rescue progenitors. Thus, Dis3 establishes a disease mutation-sensitive, cell type-specific survival mechanism to enable a differentiation program.


Assuntos
Eritropoese , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Exossomos/metabolismo , Processamento Pós-Transcricional do RNA , Animais , Apoptose , Células Cultivadas , Quebras de DNA de Cadeia Dupla , Eritroblastos/citologia , Eritroblastos/metabolismo , Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Exossomos/genética , Fator de Transcrição GATA1/metabolismo , Humanos , Mutação com Perda de Função , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
20.
Cancer Discov ; 11(11): 2868-2883, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33980539

RESUMO

In acute myeloid leukemia (AML) with inv(3)(q21;q26) or t(3;3)(q21;q26), a translocated GATA2 enhancer drives oncogenic expression of EVI1. We generated an EVI1-GFP AML model and applied an unbiased CRISPR/Cas9 enhancer scan to uncover sequence motifs essential for EVI1 transcription. Using this approach, we pinpointed a single regulatory element in the translocated GATA2 enhancer that is critically required for aberrant EVI1 expression. This element contained a DNA-binding motif for the transcription factor MYB, which specifically occupied this site at the translocated allele and was dispensable for GATA2 expression. MYB knockout as well as peptidomimetic blockade of CBP/p300-dependent MYB functions resulted in downregulation of EVI1 but not of GATA2. Targeting MYB or mutating its DNA-binding motif within the GATA2 enhancer resulted in myeloid differentiation and cell death, suggesting that interference with MYB-driven EVI1 transcription provides a potential entry point for therapy of inv(3)/t(3;3) AMLs. SIGNIFICANCE: We show a novel paradigm in which chromosomal aberrations reveal critical regulatory elements that are nonfunctional at their endogenous locus. This knowledge provides a rationale to develop new compounds to selectively interfere with oncogenic enhancer activity.This article is highlighted in the In This Issue feature, p. 2659.


Assuntos
Elementos Facilitadores Genéticos , Genes myb , Leucemia Mieloide Aguda , Translocação Genética , Fator de Transcrição GATA2 , Humanos , Leucemia Mieloide Aguda/genética , Proteína do Locus do Complexo MDS1 e EVI1 , Oncogenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA