Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Planta Med ; 88(13): 1245-1255, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35226949

RESUMO

The gut microbiota has emerged as a factor that influences exercise performance and recovery. The present study aimed to test the effect of a polyherbal supplement containing ginger and annatto called "ReWin(d)" on the gut microbiota of recreational athletes in a pilot, randomized, triple-blind, placebo-controlled trial. Thirty-four participants who practice physical activity at least three times weekly were randomly allocated to two groups, a ReWin(d) group or a maltodextrin (placebo) group. We evaluated the gut microbiota, the production of short-chain fatty acids, and the serum levels of interleukin-6 and lipopolysaccharide at baseline and after 4 weeks. Results showed that ReWin(d) supplementation slightly increased gut microbiota diversity. Pairwise analysis revealed an increase in the relative abundance of Lachnospira (ß-coefficient = 0.013; p = 0.001), Subdoligranulum (ß-coefficient = 0.016; p = 0.016), Roseburia (ß-coefficient = 0.019; p = 0.001), and Butyricicoccus (ß-coefficient = 0.005; p = 0.035) genera in the ReWin(d) group, and a decrease in Lachnoclostridium (ß-coefficient = - 0.008; p = 0.009) and the Christensenellaceae R7 group (ß-coefficient = - 0.010; p < 0.001). Moreover, the Christensenellaceae R-7 group correlated positively with serum interleukin-6 (ρ = 0.4122; p = 0.032), whereas the Lachnospira genus correlated negatively with interleukin-6 (ρ = - 0.399; p = 0.032). ReWin(d) supplementation had no effect on short-chain fatty acid production or on interleukin-6 or lipopolysaccharide levels.


Assuntos
Microbioma Gastrointestinal , Zingiber officinale , Humanos , Bixaceae , Interleucina-6/farmacologia , Lipopolissacarídeos/farmacologia , Fezes , Suplementos Nutricionais , Ácidos Graxos Voláteis/farmacologia , Atletas
2.
J Agric Food Chem ; 70(6): 1878-1889, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35112856

RESUMO

Cocoa is used in the sports world as a supplement, although there is no consensus on its use. We investigated the effect of cocoa intake on intestinal ischemia (intestinal fatty acid-binding protein (I-FABP)), serum lipopolysaccharide (LPS) levels, gastrointestinal symptoms, and gut microbiota in endurance athletes during their training period on an unrestricted diet. We also performed a metabolomics analysis of serum and feces after a bout of exercise before and after supplementation. Cocoa consumption had no effect on I-FABP, LPS, or gastrointestinal symptoms. Cocoa intake significantly increased the abundance of Blautia and Lachnospira genera and decreased the abundance of the Agathobacter genus, which was accompanied by elevated levels of polyphenol fecal metabolites 4-hydroxy-5-(phenyl)-valeric acid and O-methyl-epicatechin-O-glucuronide. Our untargeted approach revealed that cocoa had no significant effects on serum and fecal metabolites and that its consumption had little impact on the metabolome after a bout of physical exercise.


Assuntos
Catequina , Microbioma Gastrointestinal , Proantocianidinas , Atletas , Fezes , Humanos , Masculino , Metaboloma
3.
Front Nutr ; 7: 583608, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392236

RESUMO

A high intake of dietary saturated fatty acids (SFAs) is related to an increased risk of obesity, inflammation and cancer-related diseases, and this risk is attenuated only when SFAs are replaced by unsaturated fats and unrefined carbohydrates. The gut microbiota has recently emerged as a new environmental factor in the pathophysiology of these disorders, and is also one of the factors most influenced by diet. We sought to determine whether the gut microbiota of healthy individuals whose intake of SFAs exceeds World Health Organization (WHO) recommendations exhibits features similar to those reported in people with obesity, inflammation, cancer or metabolic disease. Healthy non-obese subjects were divided into two groups based on their SFAs intake. Body composition and gut microbiota composition were analyzed, and associations between bacterial taxa, diet and body fat composition were determined globally and separately by sex. Metagenome functional pathways were predicted by PICRUSt analysis. Subjects whose SFAs intake exceeded WHO recommendations also had a dietary pattern of low fiber intake. This high saturated fat/low fiber diet was associated with a greater sequence abundance of the Anaerotruncus genus, a butyrate producer associated with obesity. Analysis of data of high SFAs intake by sex showed that females presented with a greater abundance of Campylobacter, Blautia, Flavonifractor and Erysipelatoclostridium, whereas males showed higher levels of Anaerotruncus, Eisenbergiella, a genus from the order Clostridiales (FamilyXIIIUCG_001) and two genera from the Lachnospiraceae family. PICRUSt analysis confirmed these data, showing a correlation with a decrease in the abundance of sequences encoding for transporters of some metals such as iron, which is needed to maintain a healthy metabolism. Thus, the microbiota of healthy people on a high SFAs diet contain bacterial taxa (Anaerotruncus, Lachnospiraceae Flavonifractor, Campylobacter, Erysipelotrichacea and Eisenbergiella) that could be related to the development of some diseases, especially obesity and other pro-inflammatory diseases in women. In summary, the present study identifies bacterial taxa that could be considered as early predictors for the onset of different diseases in healthy subjects. Also, sex differences in gut microbiota suggest that women and men differentially benefit from following a specific diet.

4.
Nutr Hosp ; 36(Spec No3): 35-39, 2019 Aug 27.
Artigo em Espanhol | MEDLINE | ID: mdl-31368330

RESUMO

INTRODUCTION: In recent years, the advance in gut microbiota knowledge has shown that is key in the development and health status of humans. There are many factors that influence the gut microbiota and its balance, being our lifestyle one of the key factors. There is an association between feeding and practicing physical exercise. People who have an active life have a healthier diet, richer in fiber, vegetables and fruits, while sedentary lifestyle is associated with diets with higher fat content and lower fiber. Our feeding behavior and the practice of physical exercise, determine the microbial diversity, as well as the presence of beneficial bacteria for our health. The influence of these factors is determined by the physiological state of the individual (illness/health, obese/lean, young/old), thus more research is needed to determine how changes occur in the microbiota depending on the individual in order to be able to move towards customized nutrition and exercise recommendations according to the needs of each individual.


INTRODUCCIÓN: En los últimos años, el avance en el conocimiento de la microbiota intestinal nos ha demostrado que es clave en el desarrollo y en el estado de salud del ser humano. Son numerosos los factores que influyen sobre la microbiota intestinal y su equilibrio, y nuestro estilo de vida es uno de los factores claves. Existe una asociación entre la alimentación y la práctica de ejercicio físico. Las personas que tienen una vida activa tienen, además, una alimentación más saludable, más rica en fibra, verduras y frutas, mientras que el sedentarismo se asociada al consumo de dietas con mayor contenido de grasa y poca fibra. Nuestro estilo de vida, entendido como alimentación y realización de ejercicio físico, determina la diversidad microbiana, así como la presencia de bacterias beneficiosas para nuestra salud. La influencia de estos factores está determinada por el estado del individuo (enfermedad/salud, obeso/delgado, joven/anciano), por lo que es necesaria más investigación para determinar cómo se producen los cambios en la microbiota en función del individuo, con el fin de poder avanzar hacia una nutrición y unas recomendaciones de ejercicio personalizadas acordes a las necesidades de cada persona.


Assuntos
Dieta Saudável , Exercício Físico/fisiologia , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Estilo de Vida , Fibras na Dieta/microbiologia , Humanos , Comportamento Sedentário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA