Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Cardiol ; 321: 133-136, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-32682005

RESUMO

BACKGROUND: Immunoglobulin light chain (AL) cardiac amyloidosis is characterized by extracellular deposition of amyloid fibrils in the heart and is potentially fatal. Untreated, it manifests clinically as heart failure with a precipitous decline and a median survival of <6 months. AL cardiac amyloidosis is associated with impaired extracellular matrix homeostasis in the heart with increased matrix metalloproteinase (MMP) levels. This commmunication provides novel insights into a potential role for doxycycline, a non-selective MMP inhibitor in AL cardiac amyloidosis. METHODS/RESULTS: Adult rat ventricular myocytes stimulated with AL (obtained from cardiac amyloidosis patients) increased MMP-2 and MMP-9 activities (P < .05); the expression of autophagy marker microtubule associated protein 1 LC-3 isoform II (LC3-II) (P < .01), and the autophagy-related proteins ATG-4B (P < .05) and ATG-5 (P < .05) as compared to untreated cardiomyocytes. Doxycycline abrogated MMP activities (P < .0001) and decreased AL-induced autophagy via ATG-5 (P < .05). CONCLUSIONS: These in vitro studies demonstrated that doxycycline, in addition to inhibiting MMP, also modulated AL-induced autophagy in cardiomyocytes and provide potential insights for future therapeutic targets for AL-induced proteotoxicity. Novel therapies for cardiotoxicity and heart failure in AL cardiac amyloidosis remain an important unmet need.


Assuntos
Amiloidose , Miócitos Cardíacos , Animais , Autofagia , Doxiciclina/farmacologia , Humanos , Cadeias Leves de Imunoglobulina , Miocárdio , Ratos
2.
J Am Heart Assoc ; 9(12): e014046, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32508185

RESUMO

Background Posttranslational protein modification with O-linked N-acetylglucosamine (O-GlcNAc) is linked to high glucose levels in type 2 diabetes mellitus (T2DM) and may alter cellular function. We sought to elucidate the involvement of O-GlcNAc modification in endothelial dysfunction in patients with T2DM. Methods and Results Freshly isolated endothelial cells obtained by J-wire biopsy from a forearm vein of patients with T2DM (n=18) was compared with controls (n=10). Endothelial O-GlcNAc levels were 1.8-ford higher in T2DM patients than in nondiabetic controls (P=0.003). Higher endothelial O-GlcNAc levels correlated with serum fasting blood glucose level (r=0.433, P=0.024) and hemoglobin A1c (r=0.418, P=0.042). In endothelial cells from patients with T2DM, normal glucose conditions (24 hours at 5 mmol/L) lowered O-GlcNAc levels and restored insulin-mediated activation of endothelial nitric oxide synthase, whereas high glucose conditions (30 mmol/L) maintained both O-GlcNAc levels and impaired insulin action. Treatment of endothelial cells with Thiamet G, an O-GlcNAcase inhibitor, increased O-GlcNAc levels and blunted the improvement of insulin-mediated endothelial nitric oxide synthase phosphorylation by glucose normalization. Conclusions Taken together, our findings indicate a role for O-GlcNAc modification in the dynamic, glucose-induced impairment of endothelial nitric oxide synthase activation in endothelial cells from patients with T2DM. O-GlcNAc protein modification may be a treatment target for vascular dysfunction in T2DM.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/efeitos dos fármacos , Antebraço/irrigação sanguínea , Glucose/farmacologia , Glucose/toxicidade , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Adulto , Estudos de Casos e Controles , Células Cultivadas , Diabetes Mellitus Tipo 2/diagnóstico , Células Endoteliais/metabolismo , Feminino , Glicosilação , Humanos , Insulina/farmacologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo , Fosforilação , beta-N-Acetil-Hexosaminidases/metabolismo
3.
Sci Rep ; 7(1): 17326, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29229927

RESUMO

The accumulation of visceral adiposity is strongly associated with systemic inflammation and increased cardiometabolic risk. WNT5A, a non-canonical WNT ligand, has been shown to promote adipose tissue inflammation and insulin resistance in animal studies. Among other non-canonical pathways, WNT5A activates planar cell polarity (PCP) signaling. The current study investigated the potential contribution of non-canonical WNT5A/PCP signaling to visceral adipose tissue (VAT) inflammation and associated metabolic dysfunction in individuals with obesity. VAT and subcutaneous adipose tissue (SAT) samples obtained from subjects undergoing bariatric surgery were analyzed by qRT-PCR for expression of WNT/PCP genes. In vitro experiments were conducted with preadipocytes isolated from VAT and SAT biopsies. The expression of 23 out of 33 PCP genes was enriched in VAT compared to SAT. Strong positive expression correlations of individual PCP genes were observed in VAT. WNT5A expression in VAT, but not in SAT, correlated with indexes of JNK signaling activity, IL6, waist-to-hip ratio and hsCRP. In vitro, WNT5A promoted the expression of IL6 in human preadipocytes. In conclusion, elevated non-canonical WNT5A signaling in VAT contributes to the exacerbated IL-6 production in this depot and the low-grade systemic inflammation typically associated with visceral adiposity.


Assuntos
Regulação da Expressão Gênica , Paniculite/metabolismo , Gordura Subcutânea/metabolismo , Via de Sinalização Wnt , Adulto , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Masculino , Paniculite/patologia , Gordura Subcutânea/patologia
5.
Atherosclerosis ; 247: 207-17, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26926601

RESUMO

BACKGROUND: Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for the removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue. We hypothesized that impaired autophagy contributes to endothelial dysfunction in diabetes mellitus. METHODS AND RESULTS: We measured autophagy markers and endothelial nitric oxide synthase (eNOS) activation in freshly isolated endothelial cells from diabetic subjects (n = 45) and non-diabetic controls (n = 41). p62 levels were higher in cells from diabetics (34.2 ± 3.6 vs. 20.0 ± 1.6, P = 0.001), indicating reduced autophagic flux. Bafilomycin inhibited insulin-induced activation of eNOS (64.7 ± 22% to -47.8 ± 8%, P = 0.04) in cells from controls, confirming that intact autophagy is necessary for eNOS signaling. In endothelial cells from diabetics, activation of autophagy with spermidine restored eNOS activation, suggesting that impaired autophagy contributes to endothelial dysfunction (P = 0.01). Indicators of autophagy initiation including the number of LC3-bound puncta and beclin 1 expression were similar in diabetics and controls, whereas an autophagy terminal phase indicator, the lysosomal protein Lamp2a, was higher in diabetics. In endothelial cells under diabetic conditions, the beneficial effect of spermidine on eNOS activation was blocked by autophagy inhibitors bafilomycin or 3-methyladenine. Blocking the terminal stage of autophagy with bafilomycin increased p62 (P = 0.01) in cells from diabetics to a lesser extent than in cells from controls (P = 0.04), suggesting ongoing, but inadequate autophagic clearance. CONCLUSION: Inadequate autophagy contributes to endothelial dysfunction in patients with diabetes and may be a target for therapy of diabetic vascular disease.


Assuntos
Autofagia/efeitos dos fármacos , Diabetes Mellitus Tipo 2/patologia , Angiopatias Diabéticas/patologia , Células Endoteliais/efeitos dos fármacos , Óxido Nítrico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espermidina/farmacologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Adulto , Idoso , Biomarcadores/metabolismo , Estudos de Casos e Controles , Separação Celular/métodos , Células Cultivadas , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/fisiopatologia , Angiopatias Diabéticas/sangue , Angiopatias Diabéticas/fisiopatologia , Angiopatias Diabéticas/prevenção & controle , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Macrolídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo III/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 36(3): 561-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26800561

RESUMO

OBJECTIVE: Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus. APPROACH AND RESULTS: We measured flow-mediated dilation of the brachial artery and characterized freshly isolated endothelial cells by protein expression, eNOS activation, and nitric oxide production in 85 subjects with type 2 diabetes mellitus (n=42) and age- and sex-matched nondiabetic controls (n=43) and in human aortic endothelial cells treated with Wnt5a. Endothelial cells from patients with diabetes mellitus displayed 1.3-fold higher Wnt5a levels (P=0.01) along with 1.4-fold higher JNK activation (P<0.01) without a difference in total JNK levels. Higher JNK activation was associated with lower flow-mediated dilation, consistent with endothelial dysfunction (r=0.53, P=0.02). Inhibition of Wnt5a and JNK signaling restored insulin and A23187-mediated eNOS activation and improved nitric oxide production in endothelial cells from patients with diabetes mellitus. In endothelial cells from nondiabetic controls, rWnt5a treatment inhibited eNOS activation replicating the diabetic endothelial phenotype. In human aortic endothelial cells, Wnt5a-induced impairment of eNOS activation and nitric oxide production was reversed by Wnt5a and JNK inhibition. CONCLUSIONS: Our findings demonstrate that noncanonical Wnt5a signaling and JNK activity contribute to vascular insulin resistance and endothelial dysfunction and may represent a novel therapeutic opportunity to protect the vasculature in patients with diabetes mellitus.


Assuntos
Artéria Braquial/enzimologia , Diabetes Mellitus Tipo 2/enzimologia , Células Endoteliais/enzimologia , Endotélio Vascular/enzimologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Vasodilatação , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Adulto , Idoso , Artéria Braquial/efeitos dos fármacos , Artéria Braquial/fisiopatologia , Estudos de Casos e Controles , Células Cultivadas , Diabetes Mellitus Tipo 2/fisiopatologia , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Ativação Enzimática , Feminino , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/farmacologia , Vasodilatação/efeitos dos fármacos , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt-5a
7.
Biochim Biophys Acta ; 1833(12): 2586-2595, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23806663

RESUMO

ADP plays critical signaling roles in the vascular endothelium. ADP receptors are targeted by several cardiovascular drugs, yet the intracellular pathways modulated by ADP are incompletely understood. These studies have identified important roles for the phosphatase PTEN in ADP-dependent modulation of the endothelial isoform of nitric oxide synthase (eNOS) as well as of lipid and protein kinase pathways in endothelial cells. We find that ADP-promoted eNOS activation as well as phosphorylation of p38 MAPK are enhanced by siRNA-mediated PTEN knockdown. However, the increase in ADP-dependent eNOS activation promoted by PTEN knockdown is abrogated by siRNA-mediated knockdown of p38 MAPK. These findings indicate that PTEN tonically suppresses both p38 phosphorylation as well as ADP-stimulated eNOS activity. A key enzymatic activity of PTEN is its role as a lipid phosphatase, catalyzing the dephosphorylation of phosphoinositol-3,4,5-trisphosphate (PIP3) to phosphoinositol-4,5-bisphosphate (PIP2). We performed biochemical analyses of cellular phospholipids in endothelial cells to show that siRNA-mediated PTEN knockdown leads to a marked increase in PIP3. Because these complex lipids activate the small GTPase Rac1, we explored the role of PTEN in ADP-modulated Rac1 activation. We used a FRET biosensor for Rac1 to show that ADP-dependent Rac1 activation is blocked by siRNA-mediated PTEN knockdown. We then exploited a FRET biosensor for PIP3 to show that the striking ADP-dependent increase in intracellular PIP3 is entirely blocked by PTEN knockdown. These studies identify a key role for PTEN in the modulation of lipid mediators involved in ADP receptor-regulated endothelial signaling pathways involving eNOS activation in vascular endothelial cells.


Assuntos
Difosfato de Adenosina/farmacologia , Células Endoteliais/enzimologia , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Actinas/metabolismo , Animais , Aorta/citologia , Bovinos , Movimento Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Modelos Biológicos , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo
8.
Proteomics ; 9(23): 5359-70, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19798666

RESUMO

Protein S-nitrosylation is a reversible post-translational modification of protein cysteines that is increasingly being considered as a signal transduction mechanism. The "biotin switch" technique marked the beginning of the study of the S-nitrosoproteome, based on the specific replacement of the labile S-nitrosylation by a more stable biotinylation that allowed further detection and purification. However, its application for proteomic studies is limited by its relatively low sensitivity. Thus, typical proteomic experiments require high quantities of protein extracts, which precludes the use of this method in a number of biological settings. We have developed a "fluorescence switch" technique that, when coupled to 2-DE proteomic methodologies, allows the detection and identification of S-nitrosylated proteins by using limited amounts of starting material, thus significantly improving the sensitivity. We have applied this methodology to detect proteins that become S-nitrosylated in endothelial cells when exposed to S-nitroso-L-cysteine, a physiological S-nitrosothiol, identifying already known S-nitrosylation targets, as well as proteins that are novel targets. This "fluorescence switch" approach also allowed us to identify several proteins that are denitrosylated by thioredoxin in cytokine-activated RAW264.7 (murine macrophage) cells. We believe that this method represents an improvement in order to approach the identification of S-nitrosylated proteins in physiological conditions.


Assuntos
Cisteína/análogos & derivados , Processamento de Proteína Pós-Traducional , Proteínas/análise , Proteínas/metabolismo , Proteômica/métodos , S-Nitrosotióis/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Cisteína/análise , Cisteína/metabolismo , Células Endoteliais/citologia , Fluorescência , Humanos , Macrófagos/citologia , Camundongos , Nitrosação , S-Nitrosotióis/análise , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA