Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 163(6): 1658-1671.e16, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35988658

RESUMO

BACKGROUND & AIMS: Pathogenesis of hepatocellular carcinoma (HCC), which kills millions annually, is poorly understood. Identification of risk factors and modifiable determinants and mechanistic understanding of how they impact HCC are urgently needed. METHODS: We sought early prognostic indicators of HCC in C57BL/6 mice, which we found were prone to developing this disease when fed a fermentable fiber-enriched diet. Such markers were used to phenotype and interrogate stages of HCC development. Their human relevance was tested using serum collected prospectively from an HCC/case-control cohort. RESULTS: HCC proneness in mice was dictated by the presence of congenitally present portosystemic shunt (PSS), which resulted in markedly elevated serum bile acids (BAs). Approximately 10% of mice from various sources exhibited PSS/cholemia, but lacked an overt phenotype when fed standard chow. However, PSS/cholemic mice fed compositionally defined diets, developed BA- and cyclooxygenase-dependent liver injury, which was exacerbated and uniformly progressed to HCC when diets were enriched with the fermentable fiber inulin. Such progression to cholestatic HCC associated with exacerbated cholemia and an immunosuppressive milieu, both of which were required in that HCC was prevented by impeding BA biosynthesis or neutralizing interleukin-10 or programmed death protein 1. Analysis of human sera revealed that elevated BA was associated with future development of HCC. CONCLUSIONS: PSS is relatively common in C57BL/6 mice and causes silent cholemia, which predisposes to liver injury and HCC, particularly when fed a fermentable fiber-enriched diet. Incidence of silent PSS/cholemia in humans awaits investigation. Regardless, measuring serum BA may aid HCC risk assessment, potentially alerting select individuals to consider dietary or BA interventions.


Assuntos
Carcinoma Hepatocelular , Doenças do Sistema Digestório , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Neoplasias Hepáticas/etiologia , Carcinoma Hepatocelular/etiologia , Camundongos Endogâmicos C57BL , Próteses e Implantes , Fibras na Dieta
2.
J Autoimmun ; 128: 102814, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35298976

RESUMO

Inflammatory bowel disease (IBD) is a serious public health problem in Western society with a continuing increase in incidence worldwide. Safe, targeted medicines for IBD are not yet available. Autophagy, a vital process implicated in normal cell homeostasis, provides a potential point of entry for the treatment of IBDs, as several autophagy-related genes are associated with IBD risk. We conducted a series of experiments in three distinct mouse models of colitis to test the effectiveness of therapeutic P140, a phosphopeptide that corrects autophagy dysfunctions in other autoimmune and inflammatory diseases. Colitis was experimentally induced in mice by administering dextran sodium sulfate and 2,4,6 trinitrobenzene sulfonic acid. Transgenic mice lacking both il-10 and iRhom2 - involved in tumor necrosis factor α secretion - were also used. In the three models investigated, P140 treatment attenuated the clinical and histological severity of colitis. Post-treatment, altered expression of several macroautophagy and chaperone-mediated autophagy markers, and of pro-inflammatory mediators was corrected. Our results demonstrate that therapeutic intervention with an autophagy modulator improves colitis in animal models. These findings highlight the potential of therapeutic peptide P140 for use in the treatment of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Autofagia , Proteínas de Transporte , Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana , Modelos Animais de Doenças , Doenças Inflamatórias Intestinais/metabolismo , Lisossomos/metabolismo , Camundongos
3.
Proc Natl Acad Sci U S A ; 117(35): 21519-21526, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817517

RESUMO

The intestinal epithelium is a highly dynamic structure that rejuvenates in response to acute stressors and can undergo alterations in cellular composition as animals age. The microbiota, acting via secreted factors related to indole, appear to regulate the sensitivity of the epithelium to stressors and promote epithelial repair via IL-22 and type I IFN signaling. As animals age, the cellular composition of the intestinal epithelium changes, resulting in a decreased proportion of goblet cells in the colon. We show that colonization of young or geriatric mice with bacteria that secrete indoles and various derivatives or administration of the indole derivative indole-3 aldehyde increases proliferation of epithelial cells and promotes goblet cell differentiation, reversing an effect of aging. To induce goblet cell differentiation, indole acts via the xenobiotic aryl hydrocarbon receptor to increase expression of the cytokine IL-10. However, the effects of indoles on goblet cells do not depend on type I IFN or on IL-22 signaling, pathways responsible for protection against acute stressors. Thus, indoles derived from the commensal microbiota regulate intestinal homeostasis, especially during aging, via mechanisms distinct from those used during responses to acute stressors. Indoles may have utility as an intervention to limit the decline of barrier integrity and the resulting systemic inflammation that occurs with aging.


Assuntos
Células Caliciformes/efeitos dos fármacos , Células Caliciformes/microbiologia , Indóis/farmacologia , Interleucina-10/metabolismo , Microbiota/fisiologia , Receptores de Hidrocarboneto Arílico/metabolismo , Envelhecimento/metabolismo , Animais , Bactérias/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Células Caliciformes/citologia , Células Caliciformes/metabolismo , Interleucina-10/biossíntese , Interleucinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muco/metabolismo , Transdução de Sinais , Interleucina 22
4.
Nat Commun ; 11(1): 2471, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424203

RESUMO

Gut microbes are linked to host metabolism, but specific mechanisms remain to be uncovered. Ceramides, a type of sphingolipid (SL), have been implicated in the development of a range of metabolic disorders from insulin resistance (IR) to hepatic steatosis. SLs are obtained from the diet and generated by de novo synthesis in mammalian tissues. Another potential, but unexplored, source of mammalian SLs is production by Bacteroidetes, the dominant phylum of the gut microbiome. Genomes of Bacteroides spp. and their relatives encode serine palmitoyltransfease (SPT), allowing them to produce SLs. Here, we explore the contribution of SL-production by gut Bacteroides to host SL homeostasis. In human cell culture, bacterial SLs are processed by host SL-metabolic pathways. In mouse models, Bacteroides-derived lipids transfer to host epithelial tissue and the hepatic portal vein. Administration of B. thetaiotaomicron to mice, but not an SPT-deficient strain, reduces de novo SL production and increases liver ceramides. These results indicate that gut-derived bacterial SLs affect host lipid metabolism.


Assuntos
Bacteroides/fisiologia , Ceramidas/metabolismo , Microbioma Gastrointestinal , Redes e Vias Metabólicas , Esfingolipídeos/metabolismo , Animais , Células CACO-2 , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Vida Livre de Germes , Humanos , Resistência à Insulina , Mucosa Intestinal/microbiologia , Fígado/metabolismo , Redes e Vias Metabólicas/genética , Camundongos , Mutação/genética , Serina C-Palmitoiltransferase/deficiência , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo
5.
Cell Mol Gastroenterol Hepatol ; 9(2): 313-333, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31593782

RESUMO

BACKGROUND & AIMS: Consumption of a low-fiber, high-fat, Western-style diet (WSD) induces adiposity and adipose inflammation characterized by increases in the M1:M2 macrophage ratio and proinflammatory cytokine expression, both of which contribute to WSD-induced metabolic syndrome. WSD-induced adipose inflammation might result from endoplasmic reticulum stress in lipid-overloaded adipocytes and/or dissemination of gut bacterial products, resulting in activation of innate immune signaling. Hence, we aimed to investigate the role of the gut microbiota, and its detection by innate immune signaling pathways, in WSD-induced adipose inflammation. METHODS: Mice were fed grain-based chow or a WSD for 8 weeks, assessed metabolically, and intestinal and adipose tissue were analyzed by flow cytometry and quantitative reverse transcription polymerase chain reaction. Microbiota was ablated via antibiotics and use of gnotobiotic mice that completely lacked microbiota (germ-free mice) or had a low-complexity microbiota (altered Schaedler flora). Innate immune signaling was ablated by genetic deletion of Toll-like receptor signaling adaptor myeloid differentiation primary response 88. RESULTS: Ablation of microbiota via antibiotic, germ-free, or altered Schaedler flora approaches did not significantly impact WSD-induced adiposity, yet dramatically reduced WSD-induced adipose inflammation as assessed by macrophage populations and cytokine expression. Microbiota ablation also prevented colonic neutrophil and CD103- dendritic cell infiltration. Such reduced indices of inflammation correlated with protection against WSD-induced dysglycemia, hypercholesterolemia, and liver dysfunction. Genetic deletion of myeloid differentiation primary response 88 also prevented WSD-induced adipose inflammation. CONCLUSIONS: These results indicate that adipose inflammation, and some aspects of metabolic syndrome, are not purely a consequence of diet-induced adiposity per se but, rather, may require disturbance of intestine-microbiota interactions and subsequent activation of innate immunity.


Assuntos
Tecido Adiposo/imunologia , Adiposidade/imunologia , Dieta Ocidental/efeitos adversos , Microbioma Gastrointestinal/imunologia , Síndrome Metabólica/imunologia , Adipócitos/imunologia , Adipócitos/metabolismo , Tecido Adiposo/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/imunologia , Transplante de Microbiota Fecal , Fezes/microbiologia , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Macrófagos/imunologia , Masculino , Síndrome Metabólica/microbiologia , Camundongos , Transdução de Sinais
8.
Autophagy ; 12(5): 770-83, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-26986695

RESUMO

The intestinal mucosa of Crohn disease (CD) patients is abnormally colonized by adherent-invasive E. coli (AIEC). Upon AIEC infection, autophagy is induced in host cells to restrain bacterial intracellular replication. The underlying mechanism, however, remains unknown. Here, we investigated the role of the EIF2AK4-EIF2A/eIF2α-ATF4 pathway in the autophagic response to AIEC infection. We showed that infection of human intestinal epithelial T84 cells with the AIEC reference strain LF82 activated the EIF2AK4-EIF2A-ATF4 pathway, as evidenced by increased phospho-EIF2AK4, phospho-EIF2A and ATF4 levels. EIF2AK4 depletion inhibited autophagy activation in response to LF82 infection, leading to increased LF82 intracellular replication and elevated pro-inflammatory cytokine production. Mechanistically, EIF2AK4 depletion suppressed the LF82-induced ATF4 binding to promoters of several autophagy genes including MAP1LC3B, BECN1, SQSTM1, ATG3 and ATG7, and this subsequently inhibited transcription of these genes. LF82 infection of wild-type (WT), but not eif2ak4(-/-), mice activated the EIF2AK4-EIF2A-ATF4 pathway, inducing autophagy gene transcription and autophagy response in enterocytes. Consequently, eif2ak4(-/-) mice exhibited increased intestinal colonization by LF82 bacteria and aggravated inflammation compared to WT mice. Activation of the EIF2AK4-EIF2A-ATF4 pathway was observed in ileal biopsies from patients with noninflamed CD, and this was suppressed in inflamed CD, suggesting that a defect in the activation of this pathway could be one of the mechanisms contributing to active disease. In conclusion, we show that activation of the EIF2AK4-EIF2A-ATF4 pathway upon AIEC infection serves as a host defense mechanism to induce functional autophagy to control AIEC intracellular replication.


Assuntos
Autofagia/fisiologia , Doença de Crohn/microbiologia , Infecções por Escherichia coli/metabolismo , Mucosa Intestinal/microbiologia , Transdução de Sinais , Fator 4 Ativador da Transcrição/metabolismo , Adolescente , Adulto , Doença de Crohn/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Intestinos/patologia , Masculino , Proteínas Serina-Treonina Quinases/metabolismo , Adulto Jovem
9.
Inflamm Bowel Dis ; 22(3): 516-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26595556

RESUMO

BACKGROUND: Crohn's disease is a chronic inflammatory bowel disease, of which the etiology involves environmental, genetic, and microbial factors. A high prevalence of adherent-invasive Escherichia coli, named AIEC, has been reported in the intestinal mucosa of patients with Crohn's disease. Exosomes are extracellular vesicles that function in intercellular communication and have been implicated in host responses to intracellular pathogens. We investigated the potential involvement of exosomes in host response to AIEC infection. METHODS: Human intestinal epithelial T84 cells, THP-1 macrophages, and CEABAC10 transgenic mice were infected with the AIEC reference strain LF82 or the nonpathogenic E. coli K-12 MG1655 strain. Exosomes were purified using the ExoQuick reagent. RESULTS: LF82 infection induced the release of exosomes by T84 and THP-1 cells. Compared with exosomes released from the uninfected or MG1655-infected T84 cells, those released from LF82-infected cells activated nuclear factor-kappa B, mitogen-activated protein kinases p38, and c-Jun N-terminal kinase and increased the secretion of proinflammatory cytokines in naive THP-1 macrophages. LF82 infection of THP-1 macrophages also induced the release of exosomes that triggered a proinflammatory response in recipient THP-1 cells. Importantly, stimulation of T84 or THP-1 cells with exosomes released from LF82-infected cells increased LF82 intracellular replication compared with stimulation with exosomes secreted by uninfected cells. Exosomes purified from intestinal lumen of CEABAC10 transgenic mice infected with LF82 increased proinflammatory responses in murine RAW 264.7 macrophages compared with those from uninfected or MG1655-infected mice. CONCLUSIONS: Exosomes are new mediators of host-AIEC interaction with their capacity to activate innate immune responses and subvert the control of AIEC replication.


Assuntos
Aderência Bacteriana/imunologia , Doença de Crohn/microbiologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/patogenicidade , Exossomos/microbiologia , Imunidade Inata/imunologia , Mucosa Intestinal/microbiologia , Animais , Western Blotting , Doença de Crohn/imunologia , Escherichia coli/crescimento & desenvolvimento , Infecções por Escherichia coli/imunologia , Exossomos/imunologia , Feminino , Humanos , Mucosa Intestinal/imunologia , Masculino , Camundongos , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA