RESUMO
Neuronal activity promotes the proliferation of healthy oligodendrocyte precursor cells (OPC) and their malignant counterparts, gliomas. Many gliomas arise from and closely resemble oligodendroglial lineage precursors, including diffuse midline glioma (DMG), a cancer affecting midline structures such as the thalamus, brainstem and spinal cord. In DMG, glutamatergic and GABAergic neuronal activity promotes progression through both paracrine signaling and through bona-fide neuron-to-glioma synapses. However, the putative roles of other neuronal subpopulations - especially neuromodulatory neurons located in the brainstem that project to long-range target sites in midline anatomical locations where DMGs arise - remain largely unexplored. Here, we demonstrate that the activity of cholinergic midbrain neurons modulates both healthy OPC and malignant DMG proliferation in a circuit-specific manner at sites of long-range cholinergic projections. Optogenetic stimulation of the cholinergic pedunculopontine nucleus (PPN) promotes glioma growth in pons, while stimulation of the laterodorsal tegmentum nucleus (LDT) facilitates proliferation in thalamus, consistent with the predominant projection patterns of each cholinergic midbrain nucleus. Reciprocal signaling was evident, as increased activity of cholinergic neurons in the PPN and LDT was observed in pontine DMG-bearing mice. In co-culture, hiPSC-derived cholinergic neurons form neuron-to-glioma networks with DMG cells and robustly promote proliferation. Single-cell RNA sequencing analyses revealed prominent expression of the muscarinic receptor genes CHRM1 and CHRM3 in primary patient DMG samples, particularly enriched in the OPC-like tumor subpopulation. Acetylcholine, the neurotransmitter cholinergic neurons release, exerts a direct effect on DMG tumor cells, promoting increased proliferation and invasion through muscarinic receptors. Pharmacological blockade of M1 and M3 acetylcholine receptors abolished the activity-regulated increase in DMG proliferation in cholinergic neuron-glioma co-culture and in vivo. Taken together, these findings demonstrate that midbrain cholinergic neuron long-range projections to midline structures promote activity-dependent DMG growth through M1 and M3 cholinergic receptors, mirroring a parallel proliferative effect on healthy OPCs.
RESUMO
Cancer neuroscience is a rapidly growing multidisciplinary field that conceptualizes tumors as tissues fully integrated into the nervous system. Recognizing the complexity and challenges in this field is of fundamental importance to achieving the goal of translational impact for cancer patients. Our commentary highlights key scientific priorities, optimal training settings, and roadblocks to translating scientific findings to the clinic in this emerging field, aiming to formulate a transformative and cohesive path forward.
RESUMO
Heterotrimeric extracellular matrix proteins laminins are mostly deposited at basal membranes and are important in repair and neoplasia. Here, we localize laminin beta 2 (LAMB2) at the sites of blood-brain barrier (BBB). Microvasculature (MV) of normal brain is endowed with complete LAMB2 coverage. In contrast, its cognate protein laminin beta 1 (LAMB1) is absent in MV of normal brain but emerges at the sprouting tip of a growing vessels. Similarly, vascular proliferation in high-grade gliomas (HGG) is accompanied by marked overexpression of LAMB1, whereas LAMB2 shows deficient deposition. We find that many brain pathologies with presence of post-gadolinium enhancement (PGE) on magnetic resonance imaging (MRI) show disruption of LAMB2 vascular ensheathment. Inhibition of vascular endothelial growth factor signaling in HGG blocks angiogenesis, suppresses PGE in HGG, prevents expression of LAMB1, and restores LAMB2 vascular coverage. Analysis of single-cell RNA sequencing (scRNA-seq) databases shows that in quiescent brain LAMB2 is predominantly expressed by BBB-associated pericytes (PCs) and endothelial cells (ECs), whereas neither cell types produce LAMB1. In contrast, in HGG, both LAMB1 and 2 are overexpressed by endothelial precursor cells, a phenotypically unique immature group, specific to proliferating hyperplastic MV.
Assuntos
Barreira Hematoencefálica , Permeabilidade Capilar , Laminina , Barreira Hematoencefálica/metabolismo , Laminina/metabolismo , Laminina/genética , Humanos , Animais , Glioma/metabolismo , Glioma/patologia , Glioma/genética , Glioma/irrigação sanguínea , Transcriptoma , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/irrigação sanguíneaRESUMO
BACKGROUND: Chimeric antigen receptor (CAR)-T cell therapies targeting glioblastoma (GBM)-associated antigens such as interleukin-13 receptor subunit alpha-2 (IL-13Rα2) have achieved limited clinical efficacy to date, in part due to an immunosuppressive tumor microenvironment (TME) characterized by inhibitory molecules such as transforming growth factor-beta (TGF-ß). The aim of this study was to engineer more potent GBM-targeting CAR-T cells by countering TGF-ß-mediated immune suppression in the TME. METHODS: We engineered a single-chain, bispecific CAR targeting IL-13Rα2 and TGF-ß, which programs tumor-specific T cells to convert TGF-ß from an immunosuppressant to an immunostimulant. Bispecific IL-13Rα2/TGF-ß CAR-T cells were evaluated for efficacy and safety against both patient-derived GBM xenografts and syngeneic models of murine glioma. RESULTS: Treatment with IL-13Rα2/TGF-ß CAR-T cells leads to greater T-cell infiltration and reduced suppressive myeloid cell presence in the tumor-bearing brain compared to treatment with conventional IL-13Rα2 CAR-T cells, resulting in improved survival in both patient-derived GBM xenografts and syngeneic models of murine glioma. CONCLUSIONS: Our findings demonstrate that by reprogramming tumor-specific T-cell responses to TGF-ß, bispecific IL-13Rα2/TGF-ß CAR-T cells resist and remodel the immunosuppressive TME to drive potent anti-tumor responses in GBM.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Imunoterapia Adotiva , Subunidade alfa2 de Receptor de Interleucina-13 , Receptores de Antígenos Quiméricos , Fator de Crescimento Transformador beta , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Glioblastoma/imunologia , Glioblastoma/terapia , Glioblastoma/patologia , Glioblastoma/metabolismo , Camundongos , Subunidade alfa2 de Receptor de Interleucina-13/imunologia , Receptores de Antígenos Quiméricos/imunologia , Fator de Crescimento Transformador beta/metabolismo , Imunoterapia Adotiva/métodos , Microambiente Tumoral/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Linfócitos T/imunologia , Células Tumorais Cultivadas , Linhagem Celular TumoralRESUMO
Ependymomas are rare brain tumors that can occur in both children and adults. Subdivided by the tumors' initial location, ependymomas develop in the central nervous system in the supratentorial or infratentorial/posterior fossa region, or the spinal cord. Supratentorial ependymomas (ST-EPNs) are predominantly characterized by common driver gene fusions such as ZFTA and YAP1 fusions. Some variants of ST-EPNs carry a high overall survival rate. In poorly responding ST-EPN variants, high levels of inter- and intratumoral heterogeneity, limited therapeutic strategies, and tumor recurrence are among the reasons for poor patient outcomes with other ST-EPN subtypes. Thus, modeling these molecular profiles is key in further studying tumorigenesis. Due to the scarcity of patient samples, the development of preclinical in vitro and in vivo models that recapitulate patient tumors is imperative when testing therapeutic approaches for this rare cancer. In this review, we will survey ST-EPN modeling systems, addressing the strengths and limitations, application for therapeutic targeting, and current literature findings.
RESUMO
The steps governing healing with or without fibrosis within the same microenvironment are unclear. After acute kidney injury (AKI), injured proximal tubular epithelial cells activate SOX9 for self-restoration. Using a multimodal approach for a head-to-head comparison of injury-induced SOX9 lineages, we identified a dynamic SOX9 switch in repairing epithelia. Lineages that regenerated epithelia silenced SOX9 and healed without fibrosis (SOX9on-off). By contrast, lineages with unrestored apicobasal polarity maintained SOX9 activity in sustained efforts to regenerate, which were identified as a SOX9on-on Cadherin6pos cell state. These reprogrammed cells generated substantial single-cell WNT activity to provoke a fibroproliferative response in adjacent fibroblasts, driving AKI to chronic kidney disease. Transplanted human kidneys displayed similar SOX9/CDH6/WNT2B responses. Thus, we have uncovered a sensor of epithelial repair status, the activity of which determines regeneration with or without fibrosis.
Assuntos
Injúria Renal Aguda , Túbulos Renais Proximais , Rim , Insuficiência Renal Crônica , Fatores de Transcrição SOX9 , Animais , Humanos , Camundongos , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Células Epiteliais , Fibrose , Rim/patologia , Regeneração , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia , Fatores de Transcrição SOX9/genética , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismoRESUMO
ADP-ribosylation factor-like protein 13B (ARL13B), a regulatory GTPase and guanine exchange factor (GEF), enriches in primary cilia and promotes tumorigenesis in part by regulating Smoothened (SMO), GLI, and Sonic Hedgehog (SHH) signaling. Gliomas with increased ARL13B, SMO, and GLI2 expression are more aggressive, but the relationship to cilia is unclear. Previous studies have showed that increasing ARL13B in glioblastoma cells promoted ciliary SMO accumulation, independent of exogenous SHH addition. Here, we show that SMO accumulation is due to increased ciliary, but not extraciliary, ARL13B. Increasing ARL13B expression promotes the accumulation of both activated SMO and GLI2 in glioma cilia. ARL13B-driven increases in ciliary SMO and GLI2 are resistant to SMO inhibitors, GDC-0449, and cyclopamine. Surprisingly, ARL13B-induced changes in ciliary SMO/GLI2 did not correlate with canonical changes in downstream SHH pathway genes. However, glioma cell lines whose cilia overexpress WT but not guanine exchange factor-deficient ARL13B, display reduced INPP5e, a ciliary membrane component whose depletion may favor SMO/GLI2 enrichment. Glioma cells overexpressing ARL13B also display reduced ciliary intraflagellar transport 88 (IFT88), suggesting that altered retrograde transport could further promote SMO/GLI accumulation. Collectively, our data suggest that factors increasing ARL13B expression in glioma cells may promote both changes in ciliary membrane characteristics and IFT proteins, leading to the accumulation of drug-resistant SMO and GLI. The downstream targets and consequences of these ciliary changes require further investigation.
Assuntos
Cílios , Glioma , Humanos , Cílios/metabolismo , Glioma/genética , Glioma/metabolismo , Proteínas Hedgehog/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo , Receptor Smoothened/metabolismoRESUMO
Glioblastoma (GBM), the most common primary malignant brain tumor, is a highly lethal form of cancer with a very limited set of treatment options. High heterogeneity in the tumor cell population and the invasive nature of these cells decrease the likely efficacy of traditional cancer treatments, thus requiring research into novel treatment options. The use of oncolytic viruses as potential therapeutics has been researched for some time. Zika virus (ZIKV) has demonstrated oncotropism and oncolytic effects on GBM stem cells (GSCs). To address the need for safe and effective GBM treatments, we designed an attenuated ZIKV strain (ZOL-1) that does not cause paralytic or neurological diseases in mouse models compared with unmodified ZIKV. Importantly, we found that patient-derived GBM tumors exhibited susceptibility (responders) and non-susceptibility (non-responders) to ZOL-1-mediated tumor cell killing, as evidenced by differential apoptotic cell death and cell viability upon ZOL-1 treatment. The oncolytic effect observed in responder cells was seen both in vitro in neurosphere models and in vivo upon xenograft. Finally, we observed that the use of ZOL-1 as combination therapy with multiple PI3K-AKT inhibitors in non-responder GBM resulted in enhanced chemotherapeutic efficacy. Altogether, this study establishes ZOL-1 as a safe and effective treatment against GBM and provides a foundation to conduct further studies evaluating its potential as an effective adjuvant with other chemotherapies and kinase inhibitors.
Assuntos
Glioblastoma , Terapia Viral Oncolítica , Infecção por Zika virus , Zika virus , Animais , Camundongos , Humanos , Glioblastoma/metabolismo , Zika virus/fisiologia , Terapia Viral Oncolítica/métodos , Fosfatidilinositol 3-QuinasesRESUMO
Tumor models are critical for the preclinical testing of brain tumors in terms of exploring new, more efficacious treatments. With significant interest in immunotherapy, it is even more critical to have a consistent, clinically pertinent, immunocompetent mouse model to examine the tumor and immune cell populations in the brain and their response to treatment. While most preclinical models utilize orthotopic transplantation of established tumor cell lines, the modeling system presented here allows for a "personalized" representation of patient-specific tumor mutations in a gradual, yet effective development from DNA constructs inserted into dividing neural precursor cells (NPCs) in vivo. DNA constructs feature the mosaic analysis with the dual-recombinase-mediated cassette exchange (MADR) method, allowing for single-copy, somatic mutagenesis of driver mutations. Using newborn mouse pups between birth and 3 days old, NPCs are targeted by taking advantage of these dividing cells lining the lateral ventricles. Microinjection of DNA plasmids (e.g., MADR-derived, transposons, CRISPR-directed sgRNA) into the ventricles is followed by electroporation using paddles that surround the rostral region of the head. Upon electrical stimulation, the DNA is taken up into the dividing cells, with the potential of integrating into the genome. The use of this method has successfully been demonstrated in developing both pediatric and adult brain tumors, including the most common malignant brain tumor, glioblastoma. This article discusses and demonstrates the different steps of developing a brain tumor model using this technique, including the procedure of anesthetizing young mouse pups, to microinjection of the plasmid mix, followed by electroporation. With this autochthonous, immunocompetent mouse model, researchers will have the ability to expand preclinical modeling approaches, in efforts to improve and examine efficacious cancer treatment.
Assuntos
Neoplasias Encefálicas , Células-Tronco Neurais , Camundongos , Animais , Células-Tronco Neurais/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Eletroporação/métodos , Plasmídeos/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/metabolismo , DNA/genética , MutaçãoRESUMO
Research models in cancer have greatly evolved in the last decade, with the advent of several new methods both in vitro and in vivo. While in vivo models remain the gold standard for preclinical studies, these methods present a series of disadvantages such as a high cost and long periods of time to produce results compared with in vitro models. We have previously developed a method named Mosaic Analysis by Dual Recombinase-mediated cassette exchange (MADR) that generates autochthonous gliomas in immunocompetent mice through the transgenesis of personalized driver mutations, which highly mimic the spatial and temporal tumor development of their human counterparts. Due to the control of single-copy expression of transgenes, it allows for comparing the visualization of tumor cells and non-tumor cells. Here we describe a method to generate murine-derived glioma organoids (MGOs) and cell line cultures from these murine models by physical and enzymatic methods for in vitro downstream applications. Tumor cells can be readily distinguished from non-tumor cell populations, in both organoids and monolayer cell cultures, and isolated due to the use of personalized fluorescent reporter transgenes. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Generation of 3D murine-derived glioma organoids Basic Protocol 2: Generation of 2D glioma monolayer cell lines.
Assuntos
Glioma , Camundongos , Humanos , Animais , Glioma/genética , Glioma/patologia , Linhagem Celular , Técnicas de Cultura de Células/métodos , Transgenes , Organoides/patologiaRESUMO
Pediatric low-grade gliomas represent the most common childhood brain tumor class. While often curable, some tumors fail to respond and even successful treatments can have life-long side effects. Many clinical trials are underway for pediatric low-grade gliomas. However, these trials are expensive and challenging to organize due to the heterogeneity of patients and subtypes. Advances in sequencing technologies are helping to mitigate this by revealing the molecular landscapes of mutations in pediatric low-grade glioma. Functionalizing these mutations in the form of preclinical models is the next step in both understanding the disease mechanisms as well as for testing therapeutics. However, such models are often more difficult to generate due to their less proliferative nature, and the heterogeneity of tumor microenvironments, cell(s)-of-origin, and genetic alterations. In this review, we discuss the molecular and genetic alterations and the various preclinical models generated for the different types of pediatric low-grade gliomas. We examined the different preclinical models for pediatric low-grade gliomas, summarizing the scientific advances made to the field and therapeutic implications. We also discuss the advantages and limitations of the various models. This review highlights the importance of preclinical models for pediatric low-grade gliomas while noting the challenges and future directions of these models to improve therapeutic outcomes of pediatric low-grade gliomas.
RESUMO
The combination of targeted therapy and immunotherapy in the treatment of metastatic renal cell carcinoma (mRCC) has significantly improved outcomes for many patients. There are multiple FDA-approved regimens for the frontline setting based on numerous randomized Phase III trials. Despite these efforts, there remains a conundrum of identifying a biomarker-driven approach for these patients and it is unclear how to predict which patients are most likely to respond to these agents. This is due, in part, to an incomplete understanding of how these drug combinations work. The use of tyrosine kinase inhibitors that have multiple 'off-target' effects may lend themselves to the benefits observed when given in combination with immunotherapy. Further, targeting multiple clones within a patient's heterogenic tumor that are responsive to targeted therapy and others that are responsive to immunotherapy may also explain some level of improved response rates to the combination approaches compared to monotherapies. This review highlights the 5 FDA-approved regimens for mRCC in the frontline setting and offers insights into potential mechanisms for improved outcomes seen in these combination approaches.
Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/patologia , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologiaRESUMO
BACKGROUND: Glioblastoma is one of the most devastating cancer worldwide based on its locally aggressive behavior and because it cannot be cured by current therapies. Defects in alternative splicing process are frequent in cancer. Recently, we demonstrated that dysregulation of the spliceosome is directly associated with glioma development, progression, and aggressiveness. METHODS: Different human cohorts and a dataset from different glioma mouse models were analyzed to determine the mutation frequency as well as the gene and protein expression levels between tumor and control samples of the splicing-factor-3B-subunit-1 (SF3B1), an essential and druggable spliceosome component. SF3B1 expression was also explored at the single-cell level across all cell subpopulations and transcriptomic programs. The association of SF3B1 expression with relevant clinical data (e.g., overall survival) in different human cohorts was also analyzed. Different functional (proliferation/migration/tumorspheres and colonies formation/VEGF secretion/apoptosis) and mechanistic (gene expression/signaling pathways) assays were performed in three different glioblastomas cell models (human primary cultures and cell lines) in response to SF3B1 blockade (using pladienolide B treatment). Moreover, tumor progression and formation were monitored in response to SF3B1 blockade in two preclinical xenograft glioblastoma mouse models. RESULTS: Our data provide novel evidence demonstrating that the splicing-factor-3B-subunit-1 (SF3B1, an essential and druggable spliceosome component) is low-frequency mutated in human gliomas (~ 1 %) but widely overexpressed in glioblastoma compared with control samples from the different human cohorts and mouse models included in the present study, wherein SF3B1 levels are associated with key molecular and clinical features (e.g., overall survival, poor prognosis and/or drug resistance). Remarkably, in vitro and in vivo blockade of SF3B1 activity with pladienolide B drastically altered multiple glioblastoma pathophysiological processes (i.e., reduction in proliferation, migration, tumorspheres formation, VEGF secretion, tumor initiation and increased apoptosis) likely by suppressing AKT/mTOR/ß-catenin pathways, and an imbalance of BCL2L1 splicing. CONCLUSIONS: Together, we highlight SF3B1 as a potential diagnostic and prognostic biomarker and an efficient pharmacological target in glioblastoma, offering a clinically relevant opportunity worth to be explored in humans.
Assuntos
Glioblastoma/genética , Fosfoproteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína bcl-X/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Glioblastoma/mortalidade , Humanos , Camundongos , Análise de Sobrevida , Transfecção , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Neurosurgery as one of the most technologically demanding medical fields rapidly adapts the newest developments from multiple scientific disciplines for treating brain tumors. Despite half a century of clinical trials, survival for brain primary tumors such as glioblastoma (GBM), the most common primary brain cancer, or rare ones including primary central nervous system lymphoma (PCNSL), is dismal. Cancer therapy and research have currently shifted toward targeted approaches, and personalized therapies. The orchestration of novel and effective blood-brain barrier (BBB) drug delivery approaches, targeting of cancer cells and regulating tumor microenvironment including the immune system are the key themes of this review. As the global pandemic due to SARS-CoV-2 virus continues, neurosurgery and neuro-oncology must wrestle with the issues related to treatment-related immune dysfunction. The selection of chemotherapeutic treatments, even rare cases of hypersensitivity reactions (HSRs) that occur among immunocompromised people, and number of vaccinations they have to get are emerging as a new chapter for modern Nano neurosurgery.
Assuntos
Neoplasias Encefálicas/cirurgia , COVID-19/cirurgia , Neurocirurgia/métodos , Animais , Barreira Hematoencefálica/cirurgia , Glioblastoma/cirurgia , Humanos , Nanotecnologia/métodos , Pandemias/estatística & dados numéricos , Microambiente Tumoral/fisiologiaRESUMO
The tumor microenvironment is a highly complex ecosystem of diverse cell types, which shape cancer biology and impact the responsiveness to therapy. Here, we analyze the microenvironment of esophageal squamous cell carcinoma (ESCC) using single-cell transcriptome sequencing in 62,161 cells from blood, adjacent nonmalignant and matched tumor samples from 11 ESCC patients. We uncover heterogeneity in most cell types of the ESCC stroma, particularly in the fibroblast and immune cell compartments. We identify a tumor-specific subset of CST1+ myofibroblasts with prognostic values and potential biological significance. CST1+ myofibroblasts are also highly tumor-specific in other cancer types. Additionally, a subset of antigen-presenting fibroblasts is revealed and validated. Analyses of myeloid and T lymphoid lineages highlight the immunosuppressive nature of the ESCC microenvironment, and identify cancer-specific expression of immune checkpoint inhibitors. This work establishes a rich resource of stromal cell types of the ESCC microenvironment for further understanding of ESCC biology.
Assuntos
Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Perfilação da Expressão Gênica , Análise de Célula Única , Microambiente Tumoral/genética , Apresentação de Antígeno , Biomarcadores Tumorais/metabolismo , Células Dendríticas/metabolismo , Neoplasias Esofágicas/imunologia , Carcinoma de Células Escamosas do Esôfago/imunologia , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Células Mieloides/metabolismo , Miofibroblastos/patologia , Prognóstico , Cistatinas Salivares/metabolismo , Análise de Sobrevida , Linfócitos T/metabolismo , Microambiente Tumoral/imunologiaRESUMO
INTRODUCTION: Down syndrome (DS) is the most common multiple malformation syndrome in humans and is associated with an increased risk of childhood malignancy, particularly leukemia. Incidence of brain tumors in patients with DS is limited to sporadic cases. We report the first case of a RELA fusion-positive ependymoma in a 3-year-old boy with DS. CASE PRESENTATION: Imaging prompted by new left-sided hemiparesis demonstrated an 8-cm hemorrhagic right temporal-parietal mass. Subsequent image-complete resection confirmed a RELA fusion-positive anaplastic ependymoma with 90% OLIG2 staining. Postoperatively, the patient, unfortunately, experienced fatal recurrence and drop metastases with leptomeningeal involvement. CONCLUSION: To our knowledge, this is the first reported case of a confirmed RELA fusion-positive ependymoma in a child with DS. We discuss this finding in the context of intracranial tumors in children with DS, as well as the finding of 90% positive OLIG2 expression and its potential as a prognostic marker.
Assuntos
Neoplasias Encefálicas , Síndrome de Down , Ependimoma , Glioma , Neoplasias Supratentoriais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/cirurgia , Criança , Pré-Escolar , Síndrome de Down/complicações , Ependimoma/complicações , Ependimoma/diagnóstico por imagem , Ependimoma/genética , Humanos , Masculino , Fator de Transcrição RelARESUMO
Although obesity is one of the strongest risk factors for esophageal adenocarcinoma, the molecular mechanisms underlying this association remain unclear. We recently identified four esophageal adenocarcinoma-specific master regulator transcription factors (MRTF) ELF3, KLF5, GATA6, and EHF. In this study, gene-set enrichment analysis of both esophageal adenocarcinoma patient samples and cell line models unbiasedly underscores fatty acid synthesis as the central pathway downstream of three MRTFs (ELF3, KLF5, GATA6). Further characterizations unexpectedly identified a transcriptional feedback loop between MRTF and fatty acid synthesis, which mutually activated each other through the nuclear receptor, PPARG. MRTFs cooperatively promoted PPARG transcription by directly regulating its promoter and a distal esophageal adenocarcinoma-specific enhancer, leading to PPARG overexpression in esophageal adenocarcinoma. PPARG was also elevated in Barrett's esophagus, a recognized precursor to esophageal adenocarcinoma, implying that PPARG might play a role in the intestinal metaplasia of esophageal squamous epithelium. Upregulation of PPARG increased de novo synthesis of fatty acids, phospholipids, and sphingolipids as revealed by mass spectrometry-based lipidomics. Moreover, ChIP-seq, 4C-seq, and a high-fat diet murine model together characterized a novel, noncanonical, and cancer-specific function of PPARG in esophageal adenocarcinoma. PPARG directly regulated the ELF3 super-enhancer, subsequently activating the transcription of other MRTFs through an interconnected regulatory circuitry. Together, elucidation of this novel transcriptional feedback loop of MRTF/PPARG/fatty acid synthesis advances our understanding of the mechanistic foundation for epigenomic dysregulation and metabolic alterations in esophageal adenocarcinoma. More importantly, this work identifies a potential avenue for prevention and early intervention of esophageal adenocarcinoma by blocking this feedback loop. SIGNIFICANCE: These findings elucidate a transcriptional feedback loop linking epigenomic dysregulation and metabolic alterations in esophageal adenocarcinoma, indicating that blocking this feedback loop could be a potential therapeutic strategy in high-risk individuals.
Assuntos
Adenocarcinoma/patologia , Proteínas de Ligação a DNA/genética , Neoplasias Esofágicas/patologia , Ácidos Graxos/biossíntese , PPAR gama/genética , Proteínas Proto-Oncogênicas c-ets/genética , Fatores de Transcrição/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Benzamidas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Ácidos Graxos/genética , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos Nus , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-ets/metabolismo , Piridinas/farmacologia , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Glioblastomas remain the deadliest brain tumour, with a dismal â¼12-16-month survival from diagnosis. Therefore, identification of new diagnostic, prognostic and therapeutic tools to tackle glioblastomas is urgently needed. Emerging evidence indicates that the cellular machinery controlling the splicing process (spliceosome) is altered in tumours, leading to oncogenic splicing events associated with tumour progression and aggressiveness. Here, we identify for the first time a profound dysregulation in the expression of relevant spliceosome components and splicing factors (at mRNA and protein levels) in well characterized cohorts of human high-grade astrocytomas, mostly glioblastomas, compared to healthy brain control samples, being SRSF3, RBM22, PTBP1 and RBM3 able to perfectly discriminate between tumours and control samples, and between proneural-like or mesenchymal-like tumours versus control samples from different mouse models with gliomas. Results were confirmed in four additional and independent human cohorts. Silencing of SRSF3, RBM22, PTBP1 and RBM3 decreased aggressiveness parameters in vitro (e.g. proliferation, migration, tumorsphere-formation, etc.) and induced apoptosis, especially SRSF3. Remarkably, SRSF3 was correlated with patient survival and relevant tumour markers, and its silencing in vivo drastically decreased tumour development and progression, likely through a molecular/cellular mechanism involving PDGFRB and associated oncogenic signalling pathways (PI3K-AKT/ERK), which may also involve the distinct alteration of alternative splicing events of specific transcription factors controlling PDGFRB (i.e. TP73). Altogether, our results demonstrate a drastic splicing machinery-associated molecular dysregulation in glioblastomas, which could potentially be considered as a source of novel diagnostic and prognostic biomarkers as well as therapeutic targets for glioblastomas. Remarkably, SRSF3 is directly associated with glioblastoma development, progression, aggressiveness and patient survival and represents a novel potential therapeutic target to tackle this devastating pathology.
Assuntos
Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/genética , Fatores de Processamento de Serina-Arginina/genética , Processamento Alternativo , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/mortalidade , Movimento Celular , Proliferação de Células , Inativação Gênica , Glioblastoma/mortalidade , Humanos , Invasividade Neoplásica/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais/genética , Análise de Sobrevida , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
In situ transgenesis methods such as viruses and electroporation can rapidly create somatic transgenic mice but lack control over copy number, zygosity, and locus specificity. Here we establish mosaic analysis by dual recombinase-mediated cassette exchange (MADR), which permits stable labeling of mutant cells expressing transgenic elements from precisely defined chromosomal loci. We provide a toolkit of MADR elements for combination labeling, inducible and reversible transgene manipulation, VCre recombinase expression, and transgenesis of human cells. Further, we demonstrate the versatility of MADR by creating glioma models with mixed reporter-identified zygosity or with "personalized" driver mutations from pediatric glioma. MADR is extensible to thousands of existing mouse lines, providing a flexible platform to democratize the generation of somatic mosaic mice. VIDEO ABSTRACT.
Assuntos
Neoplasias Encefálicas/genética , Modelos Animais de Doenças , Marcação de Genes/métodos , Loci Gênicos/genética , Glioma/genética , Mutagênese Insercional/métodos , Transgenes/genética , Animais , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Neurais/metabolismo , Recombinases/metabolismo , TransfecçãoRESUMO
We combined translating ribosome affinity purification (TRAP) with in utero electroporation (IUE), called iTRAP to identify the molecular profile of specific neuronal populations during neonatal development without the need for viral approaches and FACS sorting. We electroporated a plasmid encoding EGFP-tagged ribosomal protein L10a at embryonic day (E) 14-15 to target layer 2-4 cortical neurons of the somatosensory cortex. At three postnatal (P) ages-P0, P7, and P14-when morphogenesis occurs and synapses are forming, TRAP and molecular profiling was performed from electroporated regions. We found that ribosome bound (Ribo)-mRNAs from â¼7300 genes were significantly altered over time and included classical neuronal genes known to decrease (e.g., Tbr1, Dcx) or increase (e.g., Eno2, Camk2a, Syn1) as neurons mature. This approach led to the identification of specific developmental patterns for Ribo-mRNAs not previously reported to be developmentally regulated in neurons, providing rationale for future examination of their role in selective biological processes. These include upregulation of Lynx1, Nrn1, Cntnap1 over time; downregulation of St8sia2 and Draxin; and bidirectional changes to Fkbp1b. iTRAP is a versatile approach that allows researchers to easily assess the molecular profile of specific neuronal populations in selective brain regions under various conditions, including overexpression and knockdown of target genes, and in disease settings.