Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lab Chip ; 23(2): 239-250, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36594179

RESUMO

Tissue chip (TC) devices, also known as microphysiological systems (MPS) or organ chips (OCs or OoCs), seek to mimic human physiology on a small scale. They are intended to improve upon animal models in terms of reproducibility and human relevance, at a lower monetary and ethical cost. Virtually all TC systems are analyzed at an endpoint, leading to widespread recognition that new methods are needed to enable sensing of specific biomolecules in real time, as they are being produced by the cells. To address this need, we incorporated photonic biosensors for inflammatory cytokines into a model TC. Human bronchial epithelial cells seeded in a microfluidic device were stimulated with lipopolysaccharide, and the cytokines secreted in response sensed in real time. Sensing analyte transport through the TC in response to disruption of tissue barrier was also demonstrated. This work demonstrates the first application of photonic sensors to a human TC device, and will enable new applications in drug development and disease modeling.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Humanos , Reprodutibilidade dos Testes , Células Epiteliais , Pulmão
2.
PLoS Pathog ; 17(12): e1010177, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962975

RESUMO

The extracellular virion (EV) form of Orthopoxviruses is required for cell-to-cell spread and pathogenesis, and is the target of neutralizing antibodies in the protective immune response. EV have a double envelope that contains several unique proteins that are involved in its intracellular envelopment and/or subsequent infectivity. One of these, F13, is involved in both EV formation and infectivity. Here, we report that replacement of vaccinia virus F13L with the molluscum contagiosum virus homolog, MC021L, results in the production of EV particles with significantly increased levels of EV glycoproteins, which correlate with a small plaque phenotype. Using a novel fluorescence-activated virion sorting assay to isolate EV populations based on glycoprotein content we determine that EV containing either higher or lower levels of glycoproteins are less infectious, suggesting that there is an optimal concentration of glycoproteins in the outer envelope that is required for maximal infectivity of EV. This optimal glycoprotein concentration was required for lethality and induction of pathology in a cutaneous model of animal infection, but was not required for induction of a protective immune response. Therefore, our results demonstrate that there is a sensitive balance between glycoprotein incorporation, infectivity, and pathogenesis, and that manipulation of EV glycoprotein levels can produce vaccine vectors in which pathologic side effects are attenuated without a marked diminution in induction of protective immunity.


Assuntos
Glicoproteínas/metabolismo , Vaccinia virus/patogenicidade , Vacínia/metabolismo , Proteínas Virais/metabolismo , Vírion/patogenicidade , Animais , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Vaccinia virus/metabolismo , Proteínas do Envelope Viral/metabolismo , Vírion/metabolismo
3.
J Invest Dermatol ; 141(6): 1375-1381.e1, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34024338

RESUMO

CRISPR/Cas9 technology is a powerful tool used to alter the genetic landscape of various hosts. This has been exemplified by its success in the transgenic animal world where it has been utilized to develop novel mouse lines modeling numerous disease states. The technology has helped to develop both in vitro and in vivo systems that simulate diseases within the fields of epithelial biology, skin cancer biology, dermatology, and beyond. Importantly, the delivery of the single-guide RNA/Cas9 editing complex to the host cell is key for its success. In this paper, we discuss the various methods that have been utilized as delivery techniques for CRISPR/Cas9 components, the benefits and pitfalls of each, and how successful they have been at genetically modifying epidermal cells. In addition, we acknowledge recent advances in the field of dermatology that have harnessed these methods to better understand epidermal biology, identify potential therapeutic targets, or serve as novel methods to treat disease states.


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Transferência de Genes , Dermatopatias/genética , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Queratinócitos/patologia , Mutação , Cultura Primária de Células , RNA Guia de Cinetoplastídeos/genética , Dermatopatias/patologia
4.
J Invest Dermatol ; 140(2): 361-369.e3, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31381894

RESUMO

Keratinocytes express many pattern recognition receptors that enhance the skin's adaptive immune response to epicutaneous antigens. We have shown that these pattern recognition receptors are expressed below tight junctions (TJ), strongly implicating TJ disruption as a critical step in antigen responsiveness. To disrupt TJs, we designed peptides inspired by the first extracellular loop of the TJ transmembrane protein CLDN1. These peptides transiently disrupted TJs in the human lung epithelial cell line 16HBE and delayed TJ formation in primary human keratinocytes. Building on these observations, we tested whether vaccinating mice with an epicutaneous influenza patch containing TJ-disrupting peptides was an effective strategy to elicit an immunogenic response. Application of a TJ-disrupting peptide patch resulted in barrier disruption as measured by increased transepithelial water loss. We observed a significant increase in antigen-specific antibodies when we applied patches with TJ-disrupting peptide plus antigen (influenza hemagglutinin) in either a patch-prime or a patch-boost model. Collectively, these observations demonstrate that our designed peptides perturb TJs in human lung as well as human and murine skin epithelium, enabling epicutaneous vaccine delivery. We anticipate that this approach could obviate currently used needle-based vaccination methods that require administration by health care workers and biohazard waste removal.


Assuntos
Claudina-1/química , Vacinas contra Influenza/administração & dosagem , Peptídeos/administração & dosagem , Junções Íntimas/efeitos dos fármacos , Vacinação/métodos , Adjuvantes Imunológicos/administração & dosagem , Administração Cutânea , Animais , Linhagem Celular , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunogenicidade da Vacina , Vacinas contra Influenza/imunologia , Queratinócitos , Camundongos , Peptídeos/química , Permeabilidade/efeitos dos fármacos , Cultura Primária de Células , Adesivo Transdérmico , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Perda Insensível de Água/efeitos dos fármacos
5.
J Virol ; 92(11)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29540596

RESUMO

The vaccinia virus protein F13, encoded by the F13L gene, is conserved across the subfamily Chordopoxvirinae and is critical among orthopoxviruses to produce the wrapped form of virus that is required for cell-to-cell spread. F13 is the major envelope protein on the membrane of extracellular forms of virus; however, it is not known if F13 is required in steps postwrapping. In this report, we utilize two temperature-sensitive vaccinia virus mutants from the Condit collection of temperature-sensitive viruses whose small plaque phenotypes have been mapped to the F13L gene. Despite the drastic reduction in plaque size, the temperature-sensitive viruses were found to produce levels of extracellular virions similar to those of the parental strain, Western Reserve (WR), at the permissive and nonpermissive temperatures, suggesting that they are not defective in extracellular virion formation. Analyses of extracellular virions produced by one temperature-sensitive mutant found that those produced at the nonpermissive temperature had undetectable levels of F13 and bound cells with efficiency similar to that of WR but displayed delayed cell entry kinetics. Additionally, low-pH treatment of cells bound by extracellular virions produced at the nonpermissive temperature by the temperature-sensitive reporter virus was unable to overcome a block in infection by bafilomycin A1, suggesting that these virions display increased resistance to dissolution of the extracellular virion envelope. Taken together, our results suggest that F13 plays a role both in the formation of extracellular virions and in the promotion of their rapid entry into cells by enhancing the sensitivity of the membrane to acid-induced dissolution.IMPORTANCE Vaccinia virus (VACV) is an orthopoxvirus and produces two infectious forms, mature virions (MV) and extracellular virions (EV). EV are derived from MV and contain an additional membrane that must first be removed prior to cell entry. F13 is critical for the formation of EV, but a postenvelopment role has not been described. Here, two temperature-sensitive VACV mutants whose deficiencies were previously mapped to the F13L locus are characterized. Both viruses produced EV at the nonpermissive temperature at levels similar to those of a virus that has F13L, yet they had a small plaque phenotype and rate of spread similar to that of an F13L deletion virus. F13 was undetectable on the EV membrane at the nonpermissive temperature, and these EV exhibited delayed cell entry kinetics compared to EV containing F13. This study is the first to conclusively demonstrate a novel role for F13 in cell entry of the EV form of the virus.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Vaccinia virus/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Membrana Celular/metabolismo , Chlorocebus aethiops , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Macrolídeos/farmacologia , Coelhos , Temperatura , Vaccinia virus/genética , Vaccinia virus/crescimento & desenvolvimento , Ensaio de Placa Viral
6.
Vaccine ; 35(5): 774-781, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28057386

RESUMO

There is an urgent need to develop protective vaccines for high priority viral pathogens. One approach known to enhance immune responses to viral proteins is to display them on a nanoparticle (NP) scaffold. However, little is known about the effect of protein density on the B cell response to antigens displayed on NPs. To address this question HIV-1 Envelope (Env) and influenza hemagglutinin (HA) were displayed on a polystyrene-based NP scaffold at various densities - corresponding to mean antigen distances that span the range encountered on naturally occurring virions. Our studies revealed that NPs displaying lower densities of Env or HA more efficiently stimulated antigen-specific B cells in vitro, as measured by calcium flux, than did NPs displaying higher antigen densities. Similarly, NPs displaying a low density of Env or HA also elicited higher titers of antigen-specific serum IgG in immunized BALB/c mice (including elevated titers of hemagglutination-inhibiting antibodies), as well as an increased frequency of antigen-specific antibody secreting cells in the lymph node, spleen and bone marrow. Importantly, our studies showed that the enhanced B cell response elicited by the lower density NPs is likely secondary to more efficient development of follicular helper CD4 T cells and germinal center B cells. These findings demonstrate that the density of antigen on a NP scaffold is a critical determinant of the humoral immune response elicited, and that high density display does not always result in an optimal response.


Assuntos
Anticorpos Antivirais/biossíntese , Linfócitos B/efeitos dos fármacos , HIV-1/imunologia , Vírus da Influenza A/imunologia , Nanopartículas/administração & dosagem , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Adsorção , Animais , Linfócitos B/imunologia , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Cálcio/imunologia , Cálcio/metabolismo , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunização , Linfonodos/citologia , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Poliestirenos/química , Soluções , Baço/citologia , Baço/efeitos dos fármacos , Baço/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene env do Vírus da Imunodeficiência Humana/química , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA