Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2764: 131-144, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393592

RESUMO

Mammary epithelial ducts, the main functional compartment of the mammary gland, are embedded in an adipocyte-rich stroma, which is essential for proper mammary gland development, function, and tissue homeostasis. Moreover, the adipocyte compartment has an important role in cancer progression. To better understand cell-to-cell interactions and the role of the adipocytes in the mammary gland, development of proper in vitro models which realistically mimic in vivo conditions has been essential. In this chapter, we describe a simple and effective method for generating mammary gland adipocytes from mammary fibroblasts and their subsequent co-culture with mammary epithelial organoids to further investigate the role of adipocytes in epithelial development and morphogenesis.


Assuntos
Células Epiteliais , Glândulas Mamárias Animais , Animais , Técnicas de Cocultura , Adipócitos , Organoides , Fibroblastos
2.
J Cereb Blood Flow Metab ; 42(2): 219-236, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34427147

RESUMO

Due to the limited therapeutic options after ischemic stroke, gene therapy has emerged as a promising choice, especially with recent advances in viral vector delivery systems. Therefore, we aimed to provide the current state of the art of lentivirus (LV) and adeno-associated virus (AAV) mediated gene interventions in preclinical ischemic stroke models. A systematic analysis including qualitative and quantitative syntheses of studies published until December 2020 was performed. Most of the 87 selected publications used adult male rodents and the preferred stroke model was transient middle cerebral artery occlusion. LV and AAV vectors were equally used for transgene delivery, however loads of AAVs were higher than LVs. Serotypes having broad cell tropism, the use of constitutive promoters, and virus delivery before the stroke induction via stereotaxic injection in the cortex and striatum were preferred in the analyzed studies. The meta-analysis based on infarct volume as the primary outcome confirmed the efficacy of the preclinical interventions. The quality assessment exposed publication bias and setbacks in regard to risks of bias and study relevance. The translational potential could increase by using specific cell targeting, post-stroke interventions, non-invasive systematic delivery, and use of large animals.


Assuntos
Córtex Cerebral , Corpo Estriado , Dependovirus , Terapia Genética , Vetores Genéticos , AVC Isquêmico , Lentivirus , Animais , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/metabolismo , Corpo Estriado/irrigação sanguínea , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Humanos , AVC Isquêmico/genética , AVC Isquêmico/metabolismo , AVC Isquêmico/terapia
3.
Cartilage ; 13(2_suppl): 521S-529S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34541930

RESUMO

OBJECTIVE: Nasal septal pathologies requiring surgical intervention are common in the population. Additionally, nasal chondrocytes are becoming an important cell source in cartilage tissue engineering strategies for the repair of articular cartilage lesions. These procedures damage the nasal septal cartilage whose healing potential is limited due to its avascular, aneural, and alymphatic nature. Despite the high incidence of various surgical interventions that affect septum cartilage, limited nasal cartilage repair characterizations have been performed to date. METHODS: To evaluate the healing of the nasal septum cartilage perforation, a septal biopsy was performed in 14 sheep. Two and 6 months later, the tissue formed on the place of perforation was explanted and compared with the native tissue. Tissue morphology, protein and gene expression of explanted tissue was determined using histological, immunohistochemical and real-time quantitative polymerase chain reaction analysis. RESULTS: Tissue formed on the defect site, 2 and 6 months after the biopsy was characterized as mostly connective tissue with the presence of fibroblastic cells. This newly formed tissue contained no glycosaminoglycans and collagen type II but was positively stained for collagen type I. Cartilage-specific genes COL2, AGG, and COMP were significantly decreased in 2- and 6-month samples compared with the native nasal cartilage. Levels of COL1, COL4, and CRABP1 genes specific for perichondrium and connective tissue were higher in both test group samples in comparison with native cartilage. CONCLUSIONS: Newly formed tissue was not cartilage but rather fibrous tissue suggesting the role of perichondrium and mucosa in tissue repair after nasal septum injury.


Assuntos
Cartilagem Articular , Condrócitos , Animais , Biópsia , Cartilagem Articular/patologia , Condrócitos/metabolismo , Septo Nasal , Ovinos , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA