Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Clin Nutr ; 119(5): 1270-1279, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518848

RESUMO

BACKGROUND: The substitution of monounsaturated acids (MUFAs) for saturated fatty acids (SFAs) is recommended for cardiovascular disease prevention but its impact on lipoprotein metabolism in subjects with dyslipidemia associated with insulin resistance (IR) remains largely unknown. OBJECTIVES: This study aimed to evaluate the impact of substituting MUFAs for SFAs on the in vivo kinetics of apolipoprotein (apo)B-containing lipoproteins and on the plasma lipidomic profile in adults with IR-induced dyslipidemia. METHODS: Males and females with dyslipidemia associated with IR (n = 18) were recruited for this crossover double-blind randomized controlled trial. Subjects consumed, in random order, a diet rich in SFAs (SFAs: 13.4%E; MUFAs: 14.4%E) and a diet rich in MUFAs (SFAs: 7.1%E; MUFAs: 20.7%E) in fully controlled feeding conditions for periods of 4 wk each, separated by a 4-wk washout. At the end of each diet, fasting plasma samples were taken together with measurements of the in vivo kinetics of apoB-containing lipoproteins. RESULTS: Substituting MUFAs for SFAs had no impact on triglyceride-rich lipoprotein apoB-48 fractional catabolic rate (FCR) (Δ = -8.9%, P = 0.4) and production rate (Δ = 0.0%, P = 0.9), although it decreased very low-density lipoprotein apoB-100 pool size (PS) (Δ = -22.5%; P = 0.01). This substitution also reduced low-density lipoprotein cholesterol (LDL-C) (Δ = -7.0%; P = 0.01), non-high-density lipoprotein cholesterol (Δ = -2.5%; P = 0.04), and LDL apoB-100 PS (Δ = -6.0%; P = 0.05). These differences were partially attributed to an increase in LDL apoB-100 FCR (Δ = +1.6%; P = 0.05). The MUFA diet showed reduced sphingolipid concentrations and elevated glycerophospholipid levels compared with the SFA diet. CONCLUSIONS: This study demonstrated that substituting dietary MUFAs for SFAs decreases LDL-C levels and LDL PS by increasing LDL apoB-100 FCR and results in an overall improved plasma lipidomic profile in individuals with IR-induced lipidemia. TRIAL REGISTRATION: This trial was registered as clinicaltrials.gov as NCT03872349.


Assuntos
Apolipoproteína B-100 , Estudos Cross-Over , Dislipidemias , Ácidos Graxos Monoinsaturados , Ácidos Graxos , Resistência à Insulina , Azeite de Oliva , Humanos , Masculino , Feminino , Dislipidemias/dietoterapia , Apolipoproteína B-100/sangue , Pessoa de Meia-Idade , Ácidos Graxos/sangue , Adulto , Método Duplo-Cego , Gorduras na Dieta
2.
Metabolites ; 12(5)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35629944

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a complex disease associated with premature mortality. Its diagnosis is challenging, and the identification of biomarkers causally influenced by NAFLD may be clinically useful. We aimed at identifying blood metabolites causally impacted by NAFLD using two-sample Mendelian randomization (MR) with validation in a population-based biobank. Our instrument for genetically predicted NAFLD included all independent genetic variants from a recent genome-wide association study. The outcomes included 123 blood metabolites from 24,925 individuals. After correction for multiple testing, a positive effect of NAFLD on plasma tyrosine levels but not on other metabolites was identified. This association was consistent across MR methods and was robust to outliers and pleiotropy. In observational analyses performed in the Estonian Biobank (10,809 individuals including 359 patients with NAFLD), after multivariable adjustment, tyrosine levels were positively associated with the presence of NAFLD (odds ratio per 1 SD increment = 1.23 [95% confidence interval = 1.12-1.36], p = 2.19 × 10-5). In a small proof-of-concept study on bariatric surgery patients, blood tyrosine levels were higher in patients with NAFLD than without. This study revealed a potentially causal effect of NAFLD on blood tyrosine levels, suggesting it may represent a new biomarker of NAFLD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA