Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Med Virol ; 96(3): e29504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38445794

RESUMO

While most NOD-like receptors (NLRs) are predominately expressed by innate immune cells, NLRC3, an inhibitory NLR of immune signaling, exhibits the highest expression in lymphocytes. The role of NLRC3 or any NLRs in B lymphocytes is completely unknown. Gammaherpesviruses, including human Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV-68), establish latent infection in B lymphocytes, which requires elevated NF-κB. This study shows that during latent EBV infection of human B cells, viral-encoded latent membrane protein 1 (LMP1) decreases NLRC3 transcript. LMP1-induced-NF-κB activation suppresses the promoter activity of NLRC3 via p65 binding to the promoter. Conversely, NLRC3 inhibits NF-κB activation by promoting the degradation of LMP1 in a proteasome-dependent manner. In vivo, MHV-68 infection reduces Nlrc3 transcripts in splenocytes, and Nlrc3-deficient mice show greater viral latency than controls. These results reveal a bidirectional regulatory circuit in B lymphocytes, where viral latent protein LMP1 reduces NLRC3 expression, while NLRC3 disrupts gammaherpesvirus latency, which is an important step for tumorigenesis.


Assuntos
Infecções por Vírus Epstein-Barr , Latência Viral , Animais , Humanos , Camundongos , Herpesvirus Humano 4/genética , NF-kappa B , Linfócitos B , Peptídeos e Proteínas de Sinalização Intercelular
2.
Proc Natl Acad Sci U S A ; 120(50): e2122178120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38051771

RESUMO

Thrombocytopenia, hemorrhage, anemia, and infection are life-threatening issues following accidental or intentional radiation exposure. Since few therapeutics are available, safe and efficacious small molecules to mitigate radiation-induced injury need to be developed. Our previous study showed the synthetic TLR2/TLR6 ligand fibroblast stimulating lipopeptide (FSL-1) prolonged survival and provided MyD88-dependent mitigation of hematopoietic acute radiation syndrome (H-ARS) in mice. Although mice and humans differ in TLR number, expression, and function, nonhuman primate (NHP) TLRs are like those of humans; therefore, studying both animal models is critical for drug development. The objectives of this study were to determine the efficacy of FSL-1 on hematopoietic recovery in small and large animal models subjected to sublethal total body irradiation and investigate its mechanism of action. In mice, we demonstrate a lack of adverse effects, an easy route of delivery (subcutaneous) and efficacy in promoting hematopoietic progenitor cell proliferation by FSL-1. NHP given radiation, followed a day later with a single subcutaneous administration of FSL-1, displayed no adversity but showed elevated hematopoietic cells. Our analyses revealed that FSL-1 promoted red blood cell development and induced soluble effectors following radiation exposure. Cytologic analysis of bone marrow aspirates revealed a striking enhancement of mononuclear progenitor cells in FSL-1-treated NHP. Combining the efficacy of FSL-1 in promoting hematopoietic cell recovery with the lack of adverse effects induced by a single administration supports the application of FSL-1 as a viable countermeasure against H-ARS.


Assuntos
Síndrome Aguda da Radiação , Receptor 2 Toll-Like , Humanos , Camundongos , Animais , Receptor 6 Toll-Like , Ligantes , Síndrome Aguda da Radiação/tratamento farmacológico , Primatas , Fibroblastos
3.
Nature ; 610(7931): 373-380, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198789

RESUMO

An immunosuppressive tumour microenvironment is a major obstacle in the control of pancreatic and other solid cancers1-3. Agonists of the stimulator of interferon genes (STING) protein trigger inflammatory innate immune responses to potentially overcome tumour immunosuppression4. Although these agonists hold promise as potential cancer therapies5, tumour resistance to STING monotherapy has emerged in clinical trials and the mechanism(s) is unclear5-7. Here we show that the administration of five distinct STING agonists, including cGAMP, results in an expansion of human and mouse interleukin (IL)-35+ regulatory B cells in pancreatic cancer. Mechanistically, cGAMP drives expression of IL-35 by B cells in an IRF3-dependent but type I interferon-independent manner. In several preclinical cancer models, the loss of STING signalling in B cells increases tumour control. Furthermore, anti-IL-35 blockade or genetic ablation of IL-35 in B cells also reduces tumour growth. Unexpectedly, the STING-IL-35 axis in B cells reduces proliferation of natural killer (NK) cells and attenuates the NK-driven anti-tumour response. These findings reveal an intrinsic barrier to systemic STING agonist monotherapy and provide a combinatorial strategy to overcome immunosuppression in tumours.


Assuntos
Linfócitos B Reguladores , Células Matadoras Naturais , Neoplasias , Animais , Linfócitos B Reguladores/imunologia , Humanos , Imunidade Inata/imunologia , Imunoterapia , Fator Regulador 3 de Interferon , Interferon Tipo I/imunologia , Interleucinas/antagonistas & inibidores , Células Matadoras Naturais/imunologia , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Nucleotídeos Cíclicos/metabolismo , Microambiente Tumoral
4.
Radiat Res ; 197(2): 199-204, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34855933

RESUMO

Radiation can be applied for therapeutic benefit against cancer or may result in devastating harm due to accidental or intentional release of nuclear energy. In all cases, radiation exposure causes molecular and cellular damage, resulting in the production of inflammatory factors and danger signals. Several classes of innate immune receptors sense the released damage associated molecules and activate cellular response pathways, including the induction of inflammasome signaling that impacts IL-1ß/IL-18 maturation and cell death. A previous report indicated inflammasomes aggravate acute radiation syndrome. In contrast, here we find that inflammasome components do not exacerbate gamma-radiation-induced injury by examining heterozygous and gene-deletion littermate controls in addition to wild-type mice. Absence of some inflammasome genes, such as caspase-1/11 and Nlrp3, enhance susceptibility of treated mice to acute radiation injury, indicating importance of the inflammasome pathway in radioprotection. Surprisingly, we discover that the survival outcome may be sex-dependent as more inflammasome-deficient male mice are susceptible to radiation-induced injury. We discuss parameters that may influence the role of inflammasomes as radioprotective or radioexacerbating factors in recovery from radiation injury including the use of littermate controls, the sex of the animals, differences in microbiota within the colonies and other experimental conditions. Under the conditions tested, inflammasome components do not exacerbate radiation injury, but rather provide protective benefit.


Assuntos
Inflamassomos
5.
Nature ; 591(7849): 300-305, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33505023

RESUMO

The inflammasome initiates innate defence and inflammatory responses by activating caspase-1 and pyroptotic cell death in myeloid cells1,2. It consists of an innate immune receptor/sensor, pro-caspase-1, and a common adaptor molecule, ASC. Consistent with their pro-inflammatory function, caspase-1, ASC and the inflammasome component NLRP3 exacerbate autoimmunity during experimental autoimmune encephalomyelitis by enhancing the secretion of IL-1ß and IL-18 in myeloid cells3-6. Here we show that the DNA-binding inflammasome receptor AIM27-10 has a T cell-intrinsic and inflammasome-independent role in the function of T regulatory (Treg) cells. AIM2 is highly expressed by both human and mouse Treg cells, is induced by TGFß, and its promoter is occupied by transcription factors that are associated with Treg cells such as RUNX1, ETS1, BCL11B and CREB. RNA sequencing, biochemical and metabolic analyses demonstrated that AIM2 attenuates AKT phosphorylation, mTOR and MYC signalling, and glycolysis, but promotes oxidative phosphorylation of lipids in Treg cells. Mechanistically, AIM2 interacts with the RACK1-PP2A phosphatase complex to restrain AKT phosphorylation. Lineage-tracing analysis demonstrates that AIM2 promotes the stability of Treg cells during inflammation. Although AIM2 is generally accepted as an inflammasome effector in myeloid cells, our results demonstrate a T cell-intrinsic role of AIM2 in restraining autoimmunity by reducing AKT-mTOR signalling and altering immune metabolism to enhance the stability of Treg cells.


Assuntos
Autoimunidade/imunologia , Proteínas de Ligação a DNA/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/prevenção & controle , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/deficiência , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Glicólise , Humanos , Inflamassomos , Inflamação/imunologia , Camundongos , Fosforilação Oxidativa , Fosforilação , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores de Quinase C Ativada/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta
6.
Science ; 370(6516)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33122357

RESUMO

Ionizing radiation causes acute radiation syndrome, which leads to hematopoietic, gastrointestinal, and cerebrovascular injuries. We investigated a population of mice that recovered from high-dose radiation to live normal life spans. These "elite-survivors" harbored distinct gut microbiota that developed after radiation and protected against radiation-induced damage and death in both germ-free and conventionally housed recipients. Elevated abundances of members of the bacterial taxa Lachnospiraceae and Enterococcaceae were associated with postradiation restoration of hematopoiesis and gastrointestinal repair. These bacteria were also found to be more abundant in leukemia patients undergoing radiotherapy, who also displayed milder gastrointestinal dysfunction. In our study in mice, metabolomics revealed increased fecal concentrations of microbially derived propionate and tryptophan metabolites in elite-survivors. The administration of these metabolites caused long-term radioprotection, mitigation of hematopoietic and gastrointestinal syndromes, and a reduction in proinflammatory responses.


Assuntos
Síndrome Aguda da Radiação/microbiologia , Clostridiales/metabolismo , Enterococcaceae/metabolismo , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Proteção Radiológica , Triptofano/metabolismo , Síndrome Aguda da Radiação/prevenção & controle , Síndrome Aguda da Radiação/terapia , Animais , Ácidos Graxos Voláteis/uso terapêutico , Humanos , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Sobreviventes
7.
Cell Host Microbe ; 25(4): 602-616.e7, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30902577

RESUMO

Establishing the balance between positive and negative innate immune mechanisms is crucial for maintaining homeostasis. Here we uncover the regulatory crosstalk between two previously unlinked innate immune receptor families: RIG-I, an anti-viral cytosolic receptor activated type I interferon production, and NLR (nucleotide-binding domain, leucine repeat domain-containing protein). We show that NLRP12 dampens RIG-I-mediated immune signaling against RNA viruses by controlling RIG-I's association with its adaptor MAVS. The nucleotide-binding domain of NLRP12 interacts with the ubiquitin ligase TRIM25 to prevent TRIM25-mediated, Lys63-linked ubiquitination and activation of RIG-I. NLRP12 also enhances RNF125-mediated, Lys48-linked degradative ubiquitination of RIG-I. Vesicular stomatitis virus (VSV) infection downregulates NLRP12 expression to allow RIG-I activation. Myeloid-cell-specific Nlrp12-deficient mice display a heightened interferon and TNF response and are more resistant to VSV infection. These results indicate that NLRP12 functions as a checkpoint for anti-viral RIG-I activation.


Assuntos
Proteína DEAD-box 58/imunologia , Proteínas de Ligação a DNA/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/fisiologia , Fatores de Transcrição/imunologia , Animais , Proteína DEAD-box 58/genética , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Interferons/genética , Interferons/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Infecções por Vírus de RNA/genética , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Fatores de Transcrição/genética , Ubiquitinação
8.
Sci Rep ; 7(1): 17355, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29230065

RESUMO

Risks of radiation exposure from nuclear incidents and cancer radiotherapy are undeniable realities. These dangers urgently compel the development of agents for ameliorating radiation-induced injuries. Biologic pathways mediated by myeloid differentiation primary response gene 88 (MyD88), the common adaptor for toll-like receptor (TLR) and Interleukin-1 receptor signaling, are critical for radioprotection. Treating with agonists prior to radiation enhances survival by activating TLR signaling, whereas radiomitigating TLR-activating therapeutics given after exposure are less defined. We examine the radiomitigation capability of TLR agonists and identify one that is superior for its efficacy and reduced toxic consequences compared to other tested agonists. We demonstrate that the synthetic TLR2/6 ligand Fibroblast-stimulating lipopeptide (FSL-1) substantially prolongs survival in both male and female mice when administered 24 hours after radiation and shows MyD88-dependent function. FSL-1 treatment results in accelerated hematopoiesis in bone marrow, spleen and periphery, and augments systemic levels of hematopoiesis-stimulating factors. The ability of FSL-1 to stimulate hematopoiesis is critical, as hematopoietic dysfunction results from a range of ionizing radiation doses. The efficacy of a single FSL-1 dose for alleviating radiation injury while protecting against adverse effects reveals a viable radiation countermeasures agent.


Assuntos
Síndrome Aguda da Radiação/prevenção & controle , Diglicerídeos/farmacologia , Raios gama/efeitos adversos , Oligopeptídeos/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Protetores contra Radiação/farmacologia , Receptor 2 Toll-Like/agonistas , Receptor 6 Toll-Like/agonistas , Síndrome Aguda da Radiação/metabolismo , Síndrome Aguda da Radiação/patologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia
9.
J Clin Invest ; 127(9): 3472-3483, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28825599

RESUMO

Claudin-low breast cancer is an aggressive subtype that confers poor prognosis and is found largely within the clinical triple-negative group of breast cancer patients. Here, we have shown that intrinsic and immune cell gene signatures distinguish the claudin-low subtype clinically as well as in mouse models of other breast cancer subtypes. Despite adaptive immune cell infiltration in claudin-low tumors, treatment with immune checkpoint inhibitory antibodies against cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and programmed death receptor 1 (PD-1) were ineffective in controlling tumor growth. CD4+FoxP3+ Tregs represented a large proportion of the tumor-infiltrating lymphocytes (TILs) in claudin-low tumors, and Tregs isolated from tumor-bearing mice were able to suppress effector T cell responses. Tregs in the tumor microenvironment highly expressed PD-1 and were recruited partly through tumor generation of the chemokine CXCL12. Antitumor efficacy required stringent Treg depletion combined with checkpoint inhibition; delays in tumor growth were not observed using therapies that modestly diminished the number of Tregs in the tumor microenvironment. This study provides evidence that the recruitment of Tregs to the tumor microenvironment inhibits an effective antitumor immune response and highlights early Treg recruitment as a possible mechanism for the lack of response to immune checkpoint blockade antibodies in specific subtypes of cancer that are heavily infiltrated with adaptive immune cells.


Assuntos
Pontos de Checagem do Ciclo Celular , Claudinas/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos T Reguladores/imunologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Linfócitos T CD4-Positivos/imunologia , Antígeno CTLA-4/metabolismo , Quimiocina CXCL12/metabolismo , Análise por Conglomerados , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral/citologia , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias de Mama Triplo Negativas/imunologia , Microambiente Tumoral
10.
Microbiol Spectr ; 5(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28102121

RESUMO

The inflammasome is a large multimeric protein complex comprising an effector protein that demonstrates specificity for a variety of activators or ligands; an adaptor molecule; and procaspase-1, which is converted to caspase-1 upon inflammasome activation. Inflammasomes are expressed primarily by myeloid cells and are located within the cell. The macromolecular inflammasome structure can be visualized by cryo-electron microscopy. This complex has been found to play a role in a variety of disease models in mice, and several have been genetically linked to human diseases. In most cases, the effector protein is a member of the NLR (nucleotide-binding domain leucine-rich repeat-containing) or NOD (nucleotide oligomerization domain)-like receptor protein family. However, other effectors have also been described, with the most notable being AIM-2 (absent in melanoma 2), which recognizes DNA to elicit inflammasome function. This review will focus on the role of the inflammasome in myeloid cells and its role in health and disease.


Assuntos
Inflamassomos/metabolismo , Células Mieloides/enzimologia , Células Mieloides/imunologia , Animais , Humanos
11.
Cell Rep ; 14(11): 2562-75, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26971998

RESUMO

NOD-like receptor (NLR) proteins are intracellular innate immune sensors/receptors that regulate immunity. This work shows that NLRX1 serves as a tumor suppressor in colitis-associated cancer (CAC) and sporadic colon cancer by keeping key tumor promoting pathways in check. Nlrx1(-/-) mice were highly susceptible to CAC, showing increases in key cancer-promoting pathways including nuclear factor κB (NF-κB), mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3 (STAT3), and interleukin 6 (IL-6). The tumor-suppressive function of NLRX1 originated primarily from the non-hematopoietic compartment. This prompted an analysis of NLRX1 function in the Apc(min/+) genetic model of sporadic gastrointestinal cancer. NLRX1 attenuated Apc(min/+) colon tumorigenesis, cellular proliferation, NF-κB, MAPK, STAT3 activation, and IL-6 levels. Application of anti-interleukin 6 receptor (IL6R) antibody therapy reduced tumor burden, increased survival, and reduced STAT3 activation in Nlrx1(-/-)Apc(min/+) mice. As an important clinical correlate, human colon cancer samples expressed lower levels of NLRX1 than healthy controls in multiple patient cohorts. These data implicate anti-IL6R as a potential personalized therapy for colon cancers with reduced NLRX1.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Azoximetano/toxicidade , Biomarcadores Tumorais/metabolismo , Carcinogênese , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Humanos , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Nat Med ; 21(8): 906-13, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26107252

RESUMO

The inflammasome activates caspase-1 and the release of interleukin-1ß (IL-1ß) and IL-18, and several inflammasomes protect against intestinal inflammation and colitis-associated colon cancer (CAC) in animal models. The absent in melanoma 2 (AIM2) inflammasome is activated by double-stranded DNA, and AIM2 expression is reduced in several types of cancer, but the mechanism by which AIM2 restricts tumor growth remains unclear. We found that Aim2-deficient mice had greater tumor load than Asc-deficient mice in the azoxymethane/dextran sodium sulfate (AOM/DSS) model of colorectal cancer. Tumor burden was also higher in Aim2(-/-)/Apc(Min/+) than in APC(Min/+) mice. The effects of AIM2 on CAC were independent of inflammasome activation and IL-1ß and were primarily mediated by a non-bone marrow source of AIM2. In resting cells, AIM2 physically interacted with and limited activation of DNA-dependent protein kinase (DNA-PK), a PI3K-related family member that promotes Akt phosphorylation, whereas loss of AIM2 promoted DNA-PK-mediated Akt activation. AIM2 reduced Akt activation and tumor burden in colorectal cancer models, while an Akt inhibitor reduced tumor load in Aim2(-/-) mice. These findings suggest that Akt inhibitors could be used to treat AIM2-deficient human cancers.


Assuntos
Neoplasias do Colo/prevenção & controle , Proteína Quinase Ativada por DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Inflamassomos/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Animais , Colite/complicações , Feminino , Células HCT116 , Humanos , Pólipos Intestinais/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação
13.
Artigo em Inglês | MEDLINE | ID: mdl-23248776

RESUMO

YopM is one of the six "effector Yops" of the human-pathogenic Yersinia, but its mechanism has not been defined. After delivery to J774A.1 monocyte-like cells, YopM can rapidly bind and activate the serine/threonine kinases RSK1 and PRK2. However, in infected mice, effects of Y. pestis YopM have been seen only after 24-48 h post-infection (p.i.). To identify potential direct effects of YopM in-vivo we tested for effects of YopM at 1 h and 16-18 h p.i. in mice infected systemically with 10(6) bacteria. At 16 h p.i., there was a robust host response to both parent and ΔyopM-1 Y. pestis KIM5. Compared to cells from non-infected mice, CD11b(+) cells from spleens of infected mice produced more than 100-fold greater IFNγ. In the corresponding sera there were more than 100-fold greater amounts of IFNγ, G-CSF, and CXCL9, as well as more than 10-fold greater amounts of IL-6, CXCL10, and CXCL1. The only YopM-related differences were slightly lower CXCL10 and IL-6 in sera from mice infected 16 h with parent compared to ΔyopM-1 Y. pestis. Microarray analysis of the CD11b(+) cells did not identify consistent transcriptional differences of ≥4-fold at 18 h p.i. However, at 1 h p.i. mRNA for early growth response transcription factor 1 (Egr1) was decreased when YopM was present. Bone marrow-derived macrophages infected for 1 h also expressed lower Egr1 message when YopM was present. Infected J774A.1 cells showed greater expression of Egr1 at 1 h p.i. when YopM was present, but this pattern reversed at 3 h. At 6 h p.i., Cxcl10 mRNA was lower in parent-strain infected cells. We conclude that decreased Egr1 expression is a very early transcriptional effect of YopM and speculate that a pathway may exist from RSK1 through Egr1. These studies revealed novel early transcriptional effects of YopM but point to a time after 18 h of infection when critical transitional events lead to later major effects on cytokine gene transcription.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/antagonistas & inibidores , Peste/patologia , Fatores de Virulência/metabolismo , Yersinia pestis/patogenicidade , Animais , Medula Óssea/imunologia , Células Cultivadas , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Feminino , Perfilação da Expressão Gênica , Leucócitos Mononucleares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Peste/microbiologia , Baço/imunologia , Fatores de Tempo
14.
J Immunol ; 186(3): 1333-7, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21191067

RESUMO

The nucleotide-binding domain leucine-rich repeat-containing proteins, NLRs, are intracellular sensors of pathogen-associated molecular patterns and damage-associated molecular patterns. A subgroup of NLRs can form inflammasome complexes, which facilitate the maturation of procaspase 1 to caspase 1, leading to IL-1ß and IL-18 cleavage and secretion. NLRC5 is predominantly expressed in hematopoietic cells and has not been studied for inflammasome function. RNA interference-mediated knockdown of NLRC5 nearly eliminated caspase 1, IL-1ß, and IL-18 processing in response to bacterial infection, pathogen-associated molecular patterns, and damage-associated molecular patterns. This was confirmed in primary human monocytic cells. NLRC5, together with procaspase 1, pro-IL-1ß, and the inflammasome adaptor ASC, reconstituted inflammasome activity that showed cooperativity with NLRP3. The range of pathogens that activate NLRC5 inflammasome overlaps with those that activate NLRP3. Furthermore, NLRC5 biochemically associates with NLRP3 in a nucleotide-binding domain-dependent but leucine-rich repeat-inhibitory fashion. These results invoke a model in which NLRC5 interacts with NLRP3 to cooperatively activate the inflammasome.


Assuntos
Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Animais , Proteínas de Transporte/fisiologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Escherichia coli/imunologia , Escherichia coli/patogenicidade , Regulação da Expressão Gênica/imunologia , Humanos , Imunidade Inata , Inflamassomos/biossíntese , Inflamassomos/genética , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucina/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Estrutura Terciária de Proteína/genética , Shigella flexneri/imunologia , Shigella flexneri/patogenicidade , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade
15.
Cancer Res ; 70(24): 10161-9, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21159638

RESUMO

The inflammasome is a proteolysis complex that generates the active forms of the proinflammatory cytokines interleukin (IL)-1ß and IL-18. Inflammasome activation is mediated by NLR proteins that respond to microbial and nonmicrobial stimuli. Among NLRs, NLRP3 senses the widest array of stimuli and enhances adaptive immunity. However, its role in antitumor immunity is unknown. Therefore, we evaluated the function of the NLRP3 inflammasome in the immune response using dendritic cell vaccination against the poorly immunogenic melanoma cell line B16-F10. Vaccination of Nlrp3(-/-) mice led to a relative 4-fold improvement in survival relative to control animals. Immunity depended on CD8(+) T cells and exhibited immune specificity and memory. Increased vaccine efficacy in Nlrp3(-/-) hosts did not reflect differences in dendritic cells but rather differences in myeloid-derived suppressor cells (MDSC). Although Nlrp3 was expressed in MDSCs, the absence of Nlrp3 did not alter either their functional capacity to inhibit T cells or their presence in peripheral lymphoid tissues. Instead, the absence of Nlrp3 caused a 5-fold reduction in the number of tumor-associated MDSCs found in host mice. Adoptive transfer experiments also showed that Nlrp3(-/-) MDSCs were less efficient in reaching the tumor site. Depleting MDSCs with an anti-Gr-1 antibody increased the survival of tumor-bearing wild-type mice but not Nlrp3(-/-) mice. We concluded that Nlrp3 was critical for accumulation of MDSCs in tumors and for inhibition of antitumor T-cell immunity after dendritic cell vaccination. Our findings establish an unexpected role for Nlrp3 in impeding antitumor immune responses, suggesting novel approaches to improve the response to antitumor vaccines by limiting Nlrp3 signaling.


Assuntos
Vacinas Anticâncer/imunologia , Proteínas de Transporte/imunologia , Células Dendríticas/imunologia , Inflamassomos/imunologia , Células Mieloides/imunologia , Linfócitos T Reguladores/imunologia , Animais , Vacinas Anticâncer/antagonistas & inibidores , Vacinas Anticâncer/farmacologia , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/terapia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Movimento Celular/imunologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR
16.
Exp Cell Res ; 313(1): 65-76, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17069796

RESUMO

Analysis of lung cancer response to chemotherapeutic agents showed the accumulation of a Taxol-induced protein that reacted with an anti-phospho-MEK1/2 antibody. Mass spectroscopy identified the protein as nucleophosmin/B23 (NPM), a multifunctional protein with diverse roles: ribosome biosynthesis, p53 regulation, nuclear-cytoplasmic shuttling, and centrosome duplication. Our work demonstrates that following cellular exposure to mitosis-arresting agents, NPM is phosphorylated and its chromatographic property is altered, suggesting changes in function during mitosis. To determine the functional relevance of NPM, its expression in tumor cells was reduced by siRNA. Cells with reduced NPM were treated with Taxol followed by microarray profiling accompanied by gene/protein pathway analyses. These studies demonstrate several expected and unexpected consequences of NPM depletion. The predominant downstream effectors of NPM are genes involved in cell proliferation, cancer, and the cell cycle. In congruence with its role in cancer, NPM is over-expressed in primary malignant lung cancer tissues. We also demonstrate a role for NPM in the expression of genes encoding SET (TAF1beta) and the histone methylase SET8. Additionally, we show that NPM is required for a previously unobserved G2/M upregulation of TAF1A, which encodes the rDNA transcription factor TAF(I)48. These results demonstrate multi-faceted functions of NPM that can affect cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteínas Nucleares/metabolismo , Paclitaxel/farmacologia , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatina/efeitos dos fármacos , Cromatina/genética , DNA de Neoplasias/genética , DNA Ribossômico/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Mitose/efeitos dos fármacos , Mitose/genética , Complexos Multiproteicos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/química , Proteínas Nucleares/genética , Nucleofosmina , Fosforilação , RNA Interferente Pequeno/genética , Transcrição Gênica/efeitos dos fármacos
17.
Cancer Res ; 65(8): 3374-9, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15833871

RESUMO

We have shown that mice that express the C-C chemokine receptor 5 (CCR5) have enhanced local tumor growth and an impaired response to vaccine therapy compared with CCR5 knockout (CCR5(-/-)) mice. Here, we extend these observations to evaluate the function of CCR5 in pulmonary metastasis and the mechanism underlying the diminished tumor growth in CCR5(-/-) mice. Lung metastases were counted in wild-type (WT) and CCR5(-/-) mice following the injection of 1 x 10(6) B16-F10 melanoma cells. These results were compared with those from syngeneic bone marrow chimeric mice formed by the transfer of WT bone marrow into irradiated CCR5(-/-) and CCR5(-/-) marrow into irradiated WT mice. Intact CCR5(-/-) mice developed fewer metastases than WT mice (40.2 versus 70.6; P < 0.05). Bone marrow chimeras formed by the transfer of WT bone marrow into CCR5(-/-) hosts had fewer metastases than WT hosts injected with knockout marrow (46.6 versus 98.6; P < 0.01). Adoptive transfer of CCR5-expressing leukocytes also failed to promote metastasis in CCR5(-/-) mice. However, the i.v. transfer of WT pulmonary stromal cells into CCR5(-/-) mice increased the number of metastases compared with transfer of CCR5(-/-) stromal cells (102.8 versus 26.0; P < 0.05). These results show for the first time that CCR5 expression on stromal and not hematopoietic cells contributes to tumor metastasis. Therefore, recently developed CCR5 inhibitors may have a novel benefit in cancer therapy.


Assuntos
Neoplasias Pulmonares/secundário , Melanoma Experimental/secundário , Receptores CCR5/fisiologia , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Imunoterapia Adotiva , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Melanoma Experimental/imunologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores CCR5/biossíntese , Receptores CCR5/deficiência , Células Estromais/metabolismo
18.
J Immunol ; 169(3): 1634-9, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12133994

RESUMO

Macrophage inflammatory protein 1 alpha (MIP-1 alpha), a CC chemokine, is a chemoattractant for T cells and immature dendritic cells. Plasmacytoma cells expressing MIP-1 alpha generate a cytotoxic T cell response without affecting tumor growth. To understand this discrepancy, we compared a local tumor model with a metastatic one using MIP-1 alpha-transfected B16 F10 melanoma cells. Clonal idiosyncrasies were controlled by selecting three lipotransfected tumor clones and two pcDNA vector transfected control clones with equivalent in vitro proliferative capacities. No significant differences were seen between the MIP-1 alpha-producing and control melanoma cells after s.c. injection in the hind leg. All animals had a leg diameter of 10 cm in 18.5-21.5 days. However, after i.v. injection the number of pulmonary foci was significantly reduced in the MIP-1 alpha-producing clones. Injection of 10(6) control transfected cells resulted in a median of 98.5 tumor foci in 2 wk, whereas the injection of the MIP-1 alpha-producing clones resulted in 89.5, 26.5, and 0 foci. The number of metastatic foci was inversely proportional to the amount of MIP-1 alpha produced by the clone in vitro. Flow cytometry showed a significant increase in CD8(+) cells in lungs of mice with MIP-1 alpha-transfected tumors 3 days after injection. This increase was not maintained 10 days later despite continued production of MIP-1 alpha. The protection offered by transfection with MIP-1 alpha was significantly impaired in beta(2)-microglobulin(-/-) mice. Our findings suggest that MIP-1 alpha is effective in preventing the initiation of metastasis, but not at sustaining an effective antitumor response.


Assuntos
Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Proteínas Inflamatórias de Macrófagos/uso terapêutico , Melanoma Experimental/patologia , Neoplasias Cutâneas/prevenção & controle , Animais , Linfócitos T CD8-Positivos/fisiologia , Divisão Celular , Quimiocina CCL3 , Quimiocina CCL4 , Feminino , Proteínas Inflamatórias de Macrófagos/genética , Camundongos , Camundongos Endogâmicos C57BL , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA