Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 12(1): 42-53, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26530282

RESUMO

Cell therapy with mesenchymal stem cells (MSCs) can improve tissue healing. It is possible, however, that priming MSCs prior to implantation can further enhance their therapeutic benefit. This study was then performed to test whether priming MSCs to be more anti-inflammatory would enhance healing in a rat ligament model, i.e. a medial collateral ligament (MCL). MSCs were primed for 48 h using polyinosinic acid and polycytidylic acid (Poly (I:C)) at a concentration of 1 µg/ml. Rat MCLs were surgically transected and administered 1 × 10(6) cells in a carrier solution at the time of injury. A series of healing metrics were analyzed at days 4 and 14 post-injury in the ligaments that received primed MSCs, unprimed MSCs, or no cells (controls). Applying primed MSCs beneficially altered healing by affecting endothelialization, type 2 macrophage presence, apoptosis, procollagen 1α, and IL-1Ra levels. When analyzing MSC localization, both primed and unprimed MSCs co-localized with endothelial cells and pericytes suggesting a supportive role in angiogenesis. Priming MSCs prior to implantation altered key ligament healing events, resulted in a more anti-inflammatory environment, and improved healing.


Assuntos
Ligamentos Colaterais/lesões , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Fisiológica , Poli I-C/farmacologia , Cicatrização/fisiologia , Animais , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Ligamentos Colaterais/irrigação sanguínea , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Humanos , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Cultura Primária de Células , Ratos , Ratos Wistar
2.
Connect Tissue Res ; 55(3): 177-86, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24649870

RESUMO

Ligaments have limited regenerative potential and as a consequence, repair is protracted and results in a mechanically inferior tissue more scar-like than native ligament. We previously reported that a single injection of interleukin-1 receptor antagonist (IL-1Ra) delivered at the time of injury, decreased the number of M2 macrophage-associated inflammatory cytokines. Based on these results, we hypothesized that IL-1Ra administered after injury and closer to peak inflammation (as would occur clinically), would more effectively decrease inflammation and thereby improve healing. Since IL-1Ra has a short half-life, we also investigated the effect of multiple injections. The objective of this study was to elucidate healing of a medial collateral ligament (MCL) with either a single IL-1Ra injection delivered one day after injury or with multiple injections of IL-1Ra on days 1, 2, 3, and 4. One day after MCL injury, rats received either single or multiple injections of IL-1Ra or PBS. Tissue was then collected at days 5 and 11. Both single and multiple IL-1Ra injections reduced inflammatory cytokines, but did not change mechanical behavior. A single injection of IL-1Ra also reduced the number of myofibroblasts and increased type I procollagen. Multiple IL-1Ra doses provided no additive response and, in fact, reduced the M2 macrophages. Based on these results, a single dose of IL-1Ra was better at reducing the MCL-derived inflammatory cytokines compared to multiple injections. The changes in type I procollagen and myofibroblasts further suggest a single injection of IL-1Ra enhanced repair of the ligament but not sufficiently to improve functional behavior.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Ligamentos/lesões , Receptores de Interleucina-1/antagonistas & inibidores , Cicatrização/efeitos dos fármacos , Animais , Inflamação/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Interleucina-1/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Ratos Wistar
3.
Stem Cell Rev Rep ; 10(1): 86-96, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24174129

RESUMO

Mesenchymal stem cells (MSCs) have potential therapeutic applications for musculoskeletal injuries due to their ability to differentiate into several tissue cell types and modulate immune and inflammatory responses. These immune-modulatory properties were examined in vivo during early stage rat medial collateral ligament healing. Two different cell doses (low dose 1 × 10(6) or high dose 4 × 10(6) MSCs) were administered at the time of injury and compared with normal ligament healing at days 5 and 14 post-injury. At both times, the high dose MSC group demonstrated a significant decrease in M2 macrophages compared to controls. At day 14, fewer M1 macrophages were detected in the low dose group compared to the high dose group. These results, along with significant changes in procollagen I, proliferating cells, and endothelialization suggest that MSCs can alter the cellular response during healing in a dose-dependent manner. The higher dose ligaments also had increased expression of several pro-inflammatory cytokines at day 5 (IL-1ß, IFNγ, IL-2) and increased expression of IL-12 at day 14. Mechanical testing at day 14 revealed increased failure strength and stiffness in low dose ligaments compared to controls. Based on these improved mechanical properties, MSCs enhanced functional healing when applied at a lower dose. Different doses of MSCs uniquely affected the cellular response and cytokine expression in healing ligaments. Interestingly, the lower dose of cells proved to be most effective in improving functional properties.


Assuntos
Citocinas/metabolismo , Ligamento Colateral Médio do Joelho/citologia , Ligamento Colateral Médio do Joelho/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Cicatrização , Animais , Células Cultivadas , Citocinas/biossíntese , Masculino , Ligamento Colateral Médio do Joelho/patologia , Células-Tronco Mesenquimais/metabolismo , Ratos , Ratos Wistar
4.
PLoS One ; 8(8): e71631, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936523

RESUMO

Ligament healing follows a series of complex coordinated events involving various cell types, cytokines, as well as other factors, producing a mechanically inferior tissue more scar-like than native tissue. Macrophages provide an ongoing source of cytokines to modulate inflammatory cell adhesion and migration as well as fibroblast proliferation. Studying interleukins inherent to ligament healing during peak macrophage activation and angiogenesis may elucidate inflammatory mediators involved in subsequent scar formation. Herein, we used a rat healing model assayed after surgical transection of their medial collateral ligaments (MCLs). On days 3 and 7 post-injury, ligaments were collected and used for microarray analysis. Of the 12 significantly modified interleukins, components of the interleukin-1 family were significantly up-regulated. We therefore examined the influence of interleukin-1 receptor antagonist (IL-1Ra) on MCL healing. Transected rat MCLs received PBS or IL-1Ra at the time of surgery. Inhibition of IL-1 activation decreased pro-inflammatory cytokines (IL-1α, IL-1ß, IL-12, IL-2, and IFN-γ), myofibroblasts, and proliferating cells, as well as increased anti-inflammatory cytokines (IL-10), endothelial cells/blood vessel lumen, M2 macrophages, and granulation tissue size without compromising the mechanical properties. These results support the concept that IL-1Ra modulates MCL-localized granulation tissue components and cytokine production to create a transient environment that is less inflammatory. Overall, IL-1Ra may have therapeutic potential early in the healing cascade by stimulating the M2 macrophages and altering the granulation tissue components. However, the single dose of IL-1Ra used in this study was insufficient to maintain the more regenerative early response. Due to the transient influence on most of the healing components tested, IL-1Ra may have greater therapeutic potential with sustained delivery.


Assuntos
Ligamentos Colaterais/efeitos dos fármacos , Ligamentos Colaterais/lesões , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucinas/genética , Receptores de Interleucina-1/antagonistas & inibidores , Animais , Fenômenos Biomecânicos , Cicatriz/prevenção & controle , Colágeno/metabolismo , Ligamentos Colaterais/patologia , Ligamentos Colaterais/fisiopatologia , Fibrose , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Ratos Wistar
5.
Connect Tissue Res ; 52(3): 203-11, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21117894

RESUMO

Despite a complex cascade of cellular events to reconstruct damaged extracellular matrix (ECM), ligament healing results in a mechanically inferior, scar-like tissue. During normal healing, the number of macrophages significantly increases within the wound site. Then, granulation tissue expands into any residual, normal ligamentous tissue (creeping substitution), resulting in a larger region of healing, greater mechanical compromise, and an inefficient repair process. To study the effects of macrophages on the repair process, bilateral, surgical rupture of their medial collateral ligaments (MCLs) was done on rats. Treatment animals received liposome-encapsulated clodronate, 2 days before rupture to ablate phagocytosing macrophages. Ligaments were then collected at days 5, 11, and 28 for immunohistochemistry (IHC) and/or mechanical testing. Clodronate treatment reduced both the M1 and M2 macrophages at day 5 and altered early healing. However, the macrophages effectively returned to control levels after day 5 and reinitiated a wound-healing response. Our results suggest that an early macrophage response, which is necessary for debridement of damaged tissue in the wound, is also important for cytokine release to mediate normal repair processes. Additionally, nonspecific inhibition of macrophages (without regard to specific macrophage populations) can control excessive granulation tissue formation but is detrimental to early matrix formation and ligament strength.


Assuntos
Macrófagos/patologia , Ligamento Colateral Médio do Joelho/patologia , Cicatrização , Animais , Fenômenos Biomecânicos/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Ácido Clodrônico/farmacologia , Colágeno/biossíntese , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Tecido de Granulação/efeitos dos fármacos , Tecido de Granulação/patologia , Imuno-Histoquímica , Lipossomos/química , Macrófagos/efeitos dos fármacos , Masculino , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Ratos , Ratos Wistar , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA