Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Comp Neurol ; 532(2): e25546, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37837642

RESUMO

The distal colon and rectum (colorectum) are innervated by spinal and vagal afferent pathways. The central circuits into which vagal and spinal afferents relay colorectal nociceptive information remain to be comparatively assessed. To address this, regional colorectal retrograde tracing and colorectal distension (CRD)-evoked neuronal activation were used to compare the circuits within the dorsal vagal complex (DVC) and dorsal horn (thoracolumbar [TL] and lumbosacral [LS] spinal levels) into which vagal and spinal colorectal afferents project. Vagal afferent projections were observed in the nucleus tractus solitarius (NTS), area postrema (AP), and dorsal motor nucleus of the vagus (DMV), labeled from the rostral colorectum. In the NTS, projections were opposed to catecholamine and pontine parabrachial nuclei (PbN)-projecting neurons. Spinal afferent projections were labeled from rostral through to caudal aspects of the colorectum. In the dorsal horn, the number of neurons activated by CRD was linked to pressure intensity, unlike in the DVC. In the NTS, 13% ± 0.6% of CRD-activated neurons projected to the PbN. In the dorsal horn, at the TL spinal level, afferent input was associated with PbN-projecting neurons in lamina I (LI), with 63% ± 3.15% of CRD-activated neurons in LI projecting to the PbN. On the other hand, at the LS spinal level, only 18% ± 0.6% of CRD-activated neurons in LI projected to the PbN. The collective data identify differences in the central neuroanatomy that support the disparate roles of vagal and spinal afferent signaling in the facilitation and modulation of colorectal nociceptive responses.


Assuntos
Neoplasias Colorretais , Nervo Vago , Camundongos , Animais , Vias Aferentes/fisiologia , Neurônios , Corno Dorsal da Medula Espinal , Neoplasias Colorretais/metabolismo , Medula Espinal/metabolismo , Neurônios Aferentes/fisiologia
2.
Pain ; 164(5): 1012-1026, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279179

RESUMO

ABSTRACT: The bladder wall is innervated by a complex network of afferent nerves that detect bladder stretch during filling. Sensory signals, generated in response to distension, are relayed to the spinal cord and brain to evoke physiological and painful sensations and regulate urine storage and voiding. Hyperexcitability of these sensory pathways is a key component in the development of chronic bladder hypersensitivity disorders including interstitial cystitis/bladder pain syndrome and overactive bladder syndrome. Despite this, the full array of ion channels that regulate bladder afferent responses to mechanical stimuli have yet to be determined. Here, we investigated the role of low-voltage-activated T-type calcium (Ca V 3) channels in regulating bladder afferent responses to distension. Using single-cell reverse-transcription polymerase chain reaction and immunofluorescence, we revealed ubiquitous expression of Ca V 3.2, but not Ca V 3.1 or Ca V 3.3, in individual bladder-innervating dorsal root ganglia neurons. Pharmacological inhibition of Ca V 3.2 with TTA-A2 and ABT-639, selective blockers of T-type calcium channels, dose-dependently attenuated ex-vivo bladder afferent responses to distension in the absence of changes to muscle compliance. Further evaluation revealed that Ca V 3.2 blockers significantly inhibited both low- and high-threshold afferents, decreasing peak responses to distension, and delayed activation thresholds, thereby attenuating bladder afferent responses to both physiological and noxious distension. Nocifensive visceromotor responses to noxious bladder distension in vivo were also significantly reduced by inhibition of Ca V 3 with TTA-A2. Together, these data provide evidence of a major role for Ca V 3.2 in regulating bladder afferent responses to bladder distension and nociceptive signalling to the spinal cord.


Assuntos
Canais de Cálcio Tipo T , Cistite Intersticial , Humanos , Bexiga Urinária/inervação , Neurônios Aferentes/fisiologia , Canais de Cálcio Tipo T/metabolismo , Vias Aferentes/fisiologia , Cistite Intersticial/metabolismo , Gânglios Espinais/metabolismo
3.
Commun Biol ; 5(1): 915, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104503

RESUMO

Our understanding of how abdominal organs (like the gut) communicate with the brain, via sensory nerves, has been limited by a lack of techniques to selectively activate or inhibit populations of spinal primary afferent neurons within dorsal root ganglia (DRG), of live animals. We report a survival surgery technique in mice, where select DRG are surgically removed (unilaterally or bilaterally), without interfering with other sensory or motor nerves. Using this approach, pain responses evoked by rectal distension were abolished by bilateral lumbosacral L5-S1 DRG removal, but not thoracolumbar T13-L1 DRG removal. However, animals lacking T13-L1 or L5-S1 DRG both showed reduced pain sensitivity to distal colonic distension. Removal of DRG led to selective loss of peripheral CGRP-expressing spinal afferent axons innervating visceral organs, arising from discrete spinal segments. This method thus allows spinal segment-specific determination of sensory pathway functions in conscious, free-to-move animals, without genetic modification.


Assuntos
Encéfalo , Gânglios Espinais , Animais , Colo , Gânglios Espinais/metabolismo , Camundongos , Dor
4.
Sci Rep ; 12(1): 9920, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705684

RESUMO

The mechanisms underlying chronic bladder conditions such as interstitial cystitis/bladder pain syndrome (IC/BPS) and overactive bladder syndrome (OAB) are incompletely understood. However, targeting specific receptors mediating neuronal sensitivity to specific stimuli is an emerging treatment strategy. Recently, irritant-sensing receptors including the bile acid receptor TGR5, have been identified within the viscera and are thought to play a key role in neuronal hypersensitivity. Here, in mice, we identify mRNA expression of TGR5 (Gpbar1) in all layers of the bladder as well as in the lumbosacral dorsal root ganglia (DRG) and in isolated bladder-innervating DRG neurons. In bladder-innervating DRG neurons Gpbar1 mRNA was 100% co-expressed with Trpv1 and 30% co-expressed with Trpa1. In vitro live-cell calcium imaging of bladder-innervating DRG neurons showed direct activation of a sub-population of bladder-innervating DRG neurons with the synthetic TGR5 agonist CCDC, which was diminished in Trpv1-/- but not Trpa1-/- DRG neurons. CCDC also activated a small percentage of non-neuronal cells. Using an ex vivo mouse bladder afferent recording preparation we show intravesical application of endogenous (5α-pregnan-3ß-ol-20-one sulphate, Pg5α) and synthetic (CCDC) TGR5 agonists enhanced afferent mechanosensitivity to bladder distension. Correspondingly, in vivo intravesical administration of CCDC increased the number of spinal dorsal horn neurons that were activated by bladder distension. The enhanced mechanosensitivity induced by CCDC ex vivo and in vivo was absent using Gpbar1-/- mice. Together, these results indicate a role for the TGR5 receptor in mediating bladder afferent hypersensitivity to distension and thus may be important to the symptoms associated with IC/BPS and OAB.


Assuntos
Cistite Intersticial , Retenção Urinária , Animais , Cistite Intersticial/metabolismo , Gânglios Espinais/metabolismo , Camundongos , Neurônios Aferentes/fisiologia , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Bexiga Urinária/metabolismo
5.
J Neurosci ; 41(17): 3900-3916, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33727332

RESUMO

Understanding the sensory mechanisms innervating the bladder is paramount to developing efficacious treatments for chronic bladder hypersensitivity conditions. The contribution of Mas-gene-related G protein-coupled receptors (Mrgpr) to bladder signaling is currently unknown. Using male and female mice, we show with single-cell RT-PCR that subpopulations of DRG neurons innervating the mouse bladder express MrgprA3 (14%) and MrgprC11 (38%), either individually or in combination, with high levels of coexpression with Trpv1 (81%-89%). Calcium imaging studies demonstrated MrgprA3 and MrgprC11 agonists (chloroquine, BAM8-22, and neuropeptide FF) activated subpopulations of bladder-innervating DRG neurons, showing functional evidence of coexpression between MrgprA3, MrgprC11, and TRPV1. In ex vivo bladder-nerve preparations, chloroquine, BAM8-22, and neuropeptide FF all evoked mechanical hypersensitivity in subpopulations (20%-41%) of bladder afferents. These effects were absent in recordings from Mrgpr-clusterΔ-/- mice. In vitro whole-cell patch-clamp recordings showed that application of an MrgprA3/C11 agonist mixture induced neuronal hyperexcitability in 44% of bladder-innervating DRG neurons. Finally, in vivo instillation of an MrgprA3/C11 agonist mixture into the bladder of WT mice induced a significant activation of dorsal horn neurons within the lumbosacral spinal cord, as quantified by pERK immunoreactivity. This MrgprA3/C11 agonist-induced activation was particularly apparent within the superficial dorsal horn and the sacral parasympathetic nuclei of WT, but not Mrgpr-clusterΔ-/- mice. This study demonstrates, for the first time, functional expression of MrgprA3 and MrgprC11 in bladder afferents. Activation of these receptors triggers hypersensitivity to distension, a critically valuable factor for therapeutic target development.SIGNIFICANCE STATEMENT Determining how bladder afferents become sensitized is the first step in finding effective treatments for common urological disorders such as overactive bladder and interstitial cystitis/bladder pain syndrome. Here we show that two of the key receptors, MrgprA3 and MrgprC11, that mediate itch from the skin are also expressed on afferents innervating the bladder. Activation of these receptors results in sensitization of bladder afferents, resulting in sensory signals being sent into the spinal cord that prematurely indicate bladder fullness. Targeting bladder afferents expressing MrgprA3 or MrgprC11 and preventing their sensitization may provide a novel approach for treating overactive bladder and interstitial cystitis/bladder pain syndrome.


Assuntos
Neurônios Aferentes/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Bexiga Urinária/inervação , Animais , Feminino , Gânglios Espinais/fisiologia , Plexo Lombossacral/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Estimulação Física , Células do Corno Posterior/fisiologia , Canais de Cátion TRPV/fisiologia
6.
Pain ; 162(2): 569-581, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32826759

RESUMO

ABSTRACT: Chronic pain is a serious debilitating condition that affects ∼20% of the world's population. Currently available drugs fail to produce effective pain relief in many patients and have dose-limiting side effects. Several voltage-gated sodium (NaV) and calcium (CaV) channels are implicated in the etiology of chronic pain, particularly NaV1.1, NaV1.3, NaV1.7-NaV1.9, CaV2.2, and CaV3.2. Numerous NaV and CaV modulators have been described, but with few exceptions, they display poor potency and/or selectivity for pain-related channel subtypes. Here, we report the discovery and characterization of 2 novel tarantula-venom peptides (Tap1a and Tap2a) isolated from Theraphosa apophysis venom that modulate the activity of both NaV and CaV3 channels. Tap1a and Tap2a inhibited on-target NaV and CaV3 channels at nanomolar to micromolar concentrations and displayed moderate off-target selectivity for NaV1.6 and weak affinity for NaV1.4 and NaV1.5. The most potent inhibitor, Tap1a, nearly ablated neuronal mechanosensitivity in afferent fibers innervating the colon and the bladder, with in vivo intracolonic administration reversing colonic mechanical hypersensitivity in a mouse model of irritable bowel syndrome. These findings suggest that targeting a specific combination of NaV and CaV3 subtypes provides a novel route for treatment of chronic visceral pain.


Assuntos
Dor Crônica , Síndrome do Intestino Irritável , Preparações Farmacêuticas , Venenos de Aranha , Dor Visceral , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Canais de Cálcio , Dor Crônica/tratamento farmacológico , Humanos , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/tratamento farmacológico , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Peptídeos/farmacologia , Sódio , Venenos de Aranha/farmacologia , Venenos de Aranha/uso terapêutico , Dor Visceral/tratamento farmacológico
7.
Front Neurosci ; 14: 590871, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192275

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic urological condition characterised by urinary urgency, frequency and pelvic pain, that significantly impacts the quality of life for ∼5% of women. Bladder sensation is coordinated by primary afferent sensory neurons that innervate the bladder wall, translating bladder stretch into signals that travel to the brain via the spinal cord. Whilst the pathophysiology of IC/BPS remains unknown, an increase in the permeability of the bladder urothelium has been proposed as an initiating cause. Here we experimentally increased bladder permeability and tracked bladder afferent sensitivity for up to 28 days. We found that one day after increasing bladder epithelial permeability with in vivo bladder infusion of protamine sulfate, mechanosensitive bladder afferents exhibited significant hypersensitivity to bladder filling. This mechanical hypersensitivity was characterised by significantly increased peak afferent firing rates and a decrease in the activation threshold of individual afferents. Bladder afferent hypersensitivity occurred in the absence of inflammation and changes in bladder muscle compliance, indicating a direct sensitisation of peripheral afferent endings. Bladder afferent mechanosensitive responses to distension returned to control levels by day 7 post-protamine sulfate treatment and remained at control levels at 28-days post-treatment. Here we demonstrate, contrary to the prevailing hypothesis, that increased bladder permeability alone does not induce chronic bladder afferent sensitisation. Whilst experimentally induced changes in bladder permeability are able to induce transient bladder afferent hypersensitivity in the absence of inflammation, highly regulated homeostatic mechanisms exist to rapidly repair the urothelial barrier and normalise bladder afferent mechanosensitivity. Together, these data suggest that additional pathophysiology is required to induce chronic bladder dysfunction.

8.
Am J Physiol Renal Physiol ; 318(2): F298-F314, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31790304

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a common chronic pelvic disorder with sensory symptoms of urinary urgency, frequency, and pain, indicating a key role for hypersensitivity of bladder-innervating sensory neurons. The inflammatory mast cell mediator histamine has long been implicated in IC/BPS, yet the direct interactions between histamine and bladder afferents remain unclear. In the present study, we show, using a mouse ex vivo bladder afferent preparation, that intravesical histamine enhanced the mechanosensitivity of subpopulations of afferents to bladder distension. Histamine also recruited "silent afferents" that were previously unresponsive to bladder distension. Furthermore, in vivo intravesical histamine enhanced activation of dorsal horn neurons within the lumbosacral spinal cord, indicating increased afferent signaling in the central nervous system. Quantitative RT-PCR revealed significant expression of histamine receptor subtypes (Hrh1-Hrh3) in mouse lumbosacral dorsal root ganglia (DRG), bladder detrusor smooth muscle, mucosa, and isolated urothelial cells. In DRG, Hrh1 was the most abundantly expressed. Acute histamine exposure evoked Ca2+ influx in select populations of DRG neurons but did not elicit calcium transients in isolated primary urothelial cells. Histamine-induced mechanical hypersensitivity ex vivo was abolished in the presence of the histamine H1 receptor antagonist pyrilamine and was not present in preparations from mice lacking transient receptor potential vanilloid 1 (TRPV1). Together, these results indicate that histamine enhances the sensitivity of bladder afferents to distension via interactions with histamine H1 receptor and TRPV1. This hypersensitivity translates to increased sensory input and activation in the spinal cord, which may underlie the symptoms of bladder hypersensitivity and pain experienced in IC/BPS.


Assuntos
Cistite Intersticial/metabolismo , Histamina/administração & dosagem , Hiperalgesia/metabolismo , Mecanorreceptores/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Receptores Histamínicos H1/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Bexiga Urinária/inervação , Administração Intravesical , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Cistite Intersticial/fisiopatologia , Feminino , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Hiperalgesia/fisiopatologia , Masculino , Mecanorreceptores/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Limiar da Dor/efeitos dos fármacos , Pressão , Receptores Histamínicos H1/metabolismo , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética , Urotélio/efeitos dos fármacos , Urotélio/metabolismo
9.
Sci Rep ; 9(1): 16101, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695098

RESUMO

Non-neuronal ATP released from the urothelium in response to bladder stretch is a key modulator of bladder mechanosensation. Whilst non-neuronal ATP acts on the underlying bladder afferent nerves to facilitate sensation, there is also the potential for ATP to act in an autocrine manner, modulating urothelial cell function. The aim of this study was to systematically characterise the functional response of primary mouse urothelial cells (PMUCs) to ATP. PMUCs isolated from male mice (14-16 weeks) were used for live-cell fluorescent calcium imaging and qRT-PCR to determine the expression profile of P2X and P2Y receptors. The majority of PMUCs (74-92%) responded to ATP (1 µM-1 mM), as indicted by an increase in intracellular calcium (iCa2+). PMUCs exhibited dose-dependent responses to ATP (10 nM-1 mM) in both calcium containing (2 mM, EC50 = 3.49 ± 0.77 µM) or calcium free (0 mM, EC50 = 9.5 ± 1.5 µM) buffers. However, maximum iCa2+ responses to ATP were significantly attenuated upon repetitive applications in calcium containing but not in calcium free buffer. qRT-PCR revealed expression of P2X1-6, and P2Y1-2, P2Y4, P2Y6, P2Y11-14, but not P2X7 in PMUCs. These findings suggest the major component of ATP induced increases in iCa2+ are mediated via the liberation of calcium from intracellular stores, implicating functional P2Y receptors that are ubiquitously expressed on PMUCs.


Assuntos
Cálcio/metabolismo , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Urotélio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sinalização do Cálcio , Células Epiteliais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2Y/genética , Urotélio/citologia
10.
Pain ; 160(11): 2566-2579, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31335750

RESUMO

Endometriosis, an estrogen-dependent chronic inflammatory disease, is the most common cause of chronic pelvic pain. Here, we investigated the effects of linaclotide, a Food and Drug Administration-approved treatment for IBS-C, in a rat model of endometriosis. Eight weeks after endometrium transplantation into the intestinal mesentery, rats developed endometrial lesions as well as vaginal hyperalgesia to distension and decreased mechanical hind paw withdrawal thresholds. Daily oral administration of linaclotide, a peripherally restricted guanylate cyclase-C (GC-C) agonist peptide acting locally within the gastrointestinal tract, increased pain thresholds to vaginal distension and mechanical hind paw withdrawal thresholds relative to vehicle treatment. Furthermore, using a cross-over design, administering linaclotide to rats previously administered vehicle resulted in increased hind paw withdrawal thresholds, whereas replacing linaclotide with vehicle treatment decreased hind paw withdrawal thresholds. Retrograde tracing of sensory afferent nerves from the ileum, colon, and vagina revealed that central terminals of these afferents lie in close apposition to one another within the dorsal horn of the spinal cord. We also identified dichotomizing dual-labelled ileal/colon innervating afferents as well as colon/vaginal dual-labelled neurons and a rare population of triple traced ileal/colon/vaginal neurons within thoracolumbar DRG. These observations provide potential sources of cross-organ interaction at the level of the DRG and spinal cord. GC-C expression is absent in the vagina and endometrial cysts suggesting that the actions of linaclotide are shared through nerve pathways between these organs. In summary, linaclotide may offer a novel therapeutic option not only for treatment of chronic endometriosis-associated pain, but also for concurrent treatment of comorbid chronic pelvic pain syndromes.


Assuntos
Endometriose/induzido quimicamente , Hiperalgesia/etiologia , Dor/tratamento farmacológico , Peptídeos/farmacologia , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/metabolismo , Animais , Endometriose/complicações , Feminino , Hiperalgesia/tratamento farmacológico , Peptídeos/efeitos adversos , Peptídeos/uso terapêutico , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
11.
Trends Biochem Sci ; 44(5): 387-390, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30792027

RESUMO

The trefoil factor family of peptides (TFF1, TFF2, TFF3) with their lectin activities play important roles in mucosal protection and repair. However, major gaps in understanding their molecular function have hampered therapeutic development for gastrointestinal disorders. We provide here a critical overview of the status quo.


Assuntos
Fatores Trefoil/metabolismo , Humanos
12.
JCI Insight ; 3(19)2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30282832

RESUMO

Irritable bowel syndrome (IBS) patients suffer from chronic abdominal pain and extraintestinal comorbidities, including overactive bladder (OAB) and interstitial cystitis/painful bladder syndrome (IC-PBS). Mechanistic understanding of the cause and time course of these comorbid symptoms is lacking, as are clinical treatments. Here, we report that colitis triggers hypersensitivity of colonic afferents, neuroplasticity of spinal cord circuits, and chronic abdominal pain, which persists after inflammation. Subsequently, and in the absence of bladder pathology, colonic hypersensitivity induces persistent hypersensitivity of bladder afferent pathways, resulting in bladder-voiding dysfunction, indicative of OAB/IC-PBS. Daily administration of linaclotide, a guanylate cyclase-C (GC-C) agonist that is restricted to and acts within the gastrointestinal tract, reverses colonic afferent hypersensitivity, reverses neuroplasticity-induced alterations in spinal circuitry, and alleviates chronic abdominal pain in mice. Intriguingly, daily linaclotide administration also reverses persistent bladder afferent hypersensitivity to mechanical and chemical stimuli and restores normal bladder voiding. Linaclotide itself does not inhibit bladder afferents, rather normalization of bladder function by daily linaclotide treatment occurs via indirect inhibition of bladder afferents via reduced nociceptive signaling from the colon. These data support the concepts that cross-organ sensitization underlies the development and maintenance of visceral comorbidities, while pharmaceutical treatments that inhibit colonic afferents may also improve urological symptoms through common sensory pathways.


Assuntos
Agonistas da Guanilil Ciclase C/administração & dosagem , Hiperalgesia/tratamento farmacológico , Síndrome do Intestino Irritável/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Peptídeos/administração & dosagem , Bexiga Urinária Hiperativa/tratamento farmacológico , Vias Aferentes/efeitos dos fármacos , Animais , Colite/induzido quimicamente , Colo/efeitos dos fármacos , Colo/inervação , Modelos Animais de Doenças , Esquema de Medicação , Humanos , Hiperalgesia/induzido quimicamente , Hiperalgesia/complicações , Síndrome do Intestino Irritável/induzido quimicamente , Síndrome do Intestino Irritável/complicações , Masculino , Camundongos , Nociceptividade/efeitos dos fármacos , Resultado do Tratamento , Ácido Trinitrobenzenossulfônico/toxicidade , Bexiga Urinária/inervação , Bexiga Urinária Hiperativa/etiologia
13.
Pain ; 159(12): 2573-2584, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30157135

RESUMO

Interstitial cystitis/bladder pain syndrome (IC/BPS) is a prevalent, chronic bladder disorder that negatively impacts the quality of life for ∼5% of the western population. Hypersensitivity of mechanosensory afferents embedded within the bladder wall is considered a key component in mediating IC/BPS symptoms. Bladder infusion of voltage-gated sodium (Nav) channel blockers show clinical efficacy in treating IC/BPS symptoms; however, the current repertoire of Nav channels expressed by and contributing to bladder afferent function is unknown. We used single-cell reverse-transcription polymerase chain reaction of retrogradely traced bladder-innervating dorsal root ganglia (DRG) neurons to determine the expression profile of Nav channels, and patch-clamp recordings to characterise the contribution of tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Nav channels to total sodium current and neuronal excitability. We determined the TTX-S and TTX-R contribution to mechanosensitive bladder afferent responses ex vivo and spinal dorsal horn activation in vivo. Single-cell reverse-transcription polymerase chain reaction of bladder-innervating DRG neurons revealed significant heterogeneity in Nav channel coexpression patterns. However, TTX-S Nav channels contribute the vast majority of the total sodium current density and regulate the neuronal excitability of bladder DRG neurons. Furthermore, TTX-S Nav channels mediate almost all bladder afferent responses to distension. In vivo intrabladder infusion of TTX significantly reduces activation of dorsal horn neurons within the spinal cord to bladder distension. These data provide the first comprehensive analysis of Nav channel expression within sensory afferents innervating the bladder. They also demonstrate an essential role for TTX-S Nav channel regulation of bladder-innervating DRG neuroexcitability, bladder afferent responses to distension, and nociceptive signalling to the spinal cord.


Assuntos
Neurônios Aferentes/fisiologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiologia , Canais de Sódio Disparados por Voltagem/metabolismo , Potenciais de Ação/efeitos dos fármacos , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/fisiologia , Animais , Cálcio/metabolismo , Toxina da Cólera/metabolismo , Estimulação Elétrica , Feminino , Gânglios Espinais/citologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , RNA Mensageiro , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Canais de Sódio Disparados por Voltagem/genética
14.
ACS Chem Biol ; 13(6): 1577-1587, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29746088

RESUMO

α-Conotoxins are disulfide-bonded peptides from cone snail venoms and are characterized by their affinity for nicotinic acetylcholine receptors (nAChR). Several α-conotoxins with distinct selectivity for nAChR subtypes have been identified as potent analgesics in animal models of chronic pain. However, a number of α-conotoxins have been shown to inhibit N-type calcium channel currents in rodent dissociated dorsal root ganglion (DRG) neurons via activation of G protein-coupled GABAB receptors (GABABR). Therefore, it is unclear whether activation of GABABR or inhibition of α9α10 nAChRs is the analgesic mechanism. To investigate the mechanisms by which α-conotoxins provide analgesia, we synthesized a suite of Vc1.1 analogues where all residues, except the conserved cysteines, in Vc1.1 were individually replaced by alanine (A), lysine (K), and aspartic acid (D). Our results show that the amino acids in the first loop play an important role in binding of the peptide to the receptor, whereas those in the second loop play an important role for the selectivity of the peptide for the GABABR over α9α10 nAChRs. We designed a cVc1.1 analogue that is >8000-fold selective for GABABR-mediated inhibition of high voltage-activated (HVA) calcium channels over α9α10 nAChRs and show that it is analgesic in a mouse model of chronic visceral hypersensitivity (CVH). cVc1.1[D11A,E14A] caused dose-dependent inhibition of colonic nociceptors with greater efficacy in ex vivo CVH colonic nociceptors relative to healthy colonic nociceptors. These findings suggest that selectively targeting GABABR-mediated HVA calcium channel inhibition by α-conotoxins could be effective for the treatment of chronic visceral pain.


Assuntos
Analgésicos/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Conotoxinas/uso terapêutico , Dor/tratamento farmacológico , Analgésicos/síntese química , Analgésicos/química , Animais , Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/química , Canais de Cálcio Tipo N/metabolismo , Conotoxinas/síntese química , Conotoxinas/química , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Antagonistas Nicotínicos/síntese química , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/uso terapêutico , Ratos Wistar , Receptores de GABA-B/metabolismo , Receptores Nicotínicos/metabolismo , Relação Estrutura-Atividade , Xenopus laevis
15.
Front Neurosci ; 12: 931, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30618560

RESUMO

The bladder is innervated by extrinsic afferents that project into the dorsal horn of the spinal cord, providing sensory input to the micturition centers within the central nervous system. Under normal conditions, the continuous activation of these neurons during bladder distension goes mostly unnoticed. However, for patients with chronic urological disorders such as overactive bladder syndrome (OAB) and interstitial cystitis/painful bladder syndrome (IC/PBS), exaggerated bladder sensation and altered bladder function are common debilitating symptoms. Whilst considered to be separate pathological entities, there is now significant clinical and pre-clinical evidence that both OAB and IC/PBS are related to structural, synaptic, or intrinsic changes in the complex signaling pathways that mediate bladder sensation. This review discusses how urothelial dysfunction, bladder permeability, inflammation, and cross-organ sensitisation between visceral organs can regulate this neuroplasticity. Furthermore, we discuss how the emotional affective component of pain processing, involving dysregulation of the HPA axis and maladaptation to stress, anxiety and depression, can exacerbate aberrant bladder sensation and urological dysfunction. This review reveals the complex nature of urological disorders, highlighting numerous interconnected mechanisms in their pathogenesis. To find appropriate therapeutic treatments for these disorders, it is first essential to understand the mechanisms responsible, incorporating research from every level of the sensory pathway, from bladder to brain.

16.
Am J Physiol Gastrointest Liver Physiol ; 314(3): G301-G308, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29146678

RESUMO

Chronic abdominal and pelvic pain are common debilitating clinical conditions experienced by millions of patients around the globe. The origin of such pain commonly arises from the intestine and bladder, which share common primary roles (the collection, storage, and expulsion of waste). These visceral organs are located in close proximity to one another and also share common innervation from spinal afferent pathways. Chronic abdominal pain, constipation, or diarrhea are primary symptoms for patients with irritable bowel syndrome or inflammatory bowel disease. Chronic pelvic pain and urinary urgency and frequency are primary symptoms experienced by patients with lower urinary tract disorders such as interstitial cystitis/painful bladder syndrome. It is becoming clear that these symptoms and clinical entities do not occur in isolation, with considerable overlap in symptom profiles across patient cohorts. Here we review recent clinical and experimental evidence documenting the existence of "cross-organ sensitization" between the colon and bladder. In such circumstances, colonic inflammation may result in profound changes to the sensory pathways innervating the bladder, resulting in severe bladder dysfunction.


Assuntos
Dor Abdominal/fisiopatologia , Dor Crônica/fisiopatologia , Colite/fisiopatologia , Colo/inervação , Gânglios Espinais/fisiopatologia , Dor Pélvica/fisiopatologia , Doenças da Bexiga Urinária/fisiopatologia , Bexiga Urinária/inervação , Micção , Dor Abdominal/diagnóstico , Dor Abdominal/epidemiologia , Animais , Dor Crônica/diagnóstico , Dor Crônica/epidemiologia , Colite/diagnóstico , Colite/epidemiologia , Humanos , Nociceptores , Dor Pélvica/diagnóstico , Dor Pélvica/epidemiologia , Prognóstico , Fatores de Risco , Doenças da Bexiga Urinária/diagnóstico , Doenças da Bexiga Urinária/epidemiologia , Urodinâmica
17.
Toxins (Basel) ; 10(1)2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29280959

RESUMO

Venoms are produced by a wide variety of species including spiders, scorpions, reptiles, cnidarians, and fish for the purpose of harming or incapacitating predators or prey. While some venoms are of relatively simple composition, many contain hundreds to thousands of individual components with distinct pharmacological activity. Pain-inducing or "algesic" venom compounds have proven invaluable to our understanding of how physiological nociceptive neural networks operate. In this review, we present an overview of some of the diverse nociceptive pathways that can be modulated by specific venom components to evoke pain.


Assuntos
Dor/induzido quimicamente , Peptídeos/toxicidade , Peçonhas/toxicidade , Animais , Humanos , Canais Iônicos/fisiologia , Dor/fisiopatologia , Fosfolipases A2/toxicidade , Proteínas Citotóxicas Formadoras de Poros/toxicidade , Células Receptoras Sensoriais/fisiologia
18.
Brain Behav Immun ; 60: 319-332, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27864046

RESUMO

OBJECTIVE: Little is understood regarding how disease progression alters immune and sensory nerve function in colitis. We investigated how acute colitis chronically alters immune recruitment and the impact this has on re-activated colitis. To understand the impact of disease progress on sensory systems we investigated the mechanisms underlying altered colonic neuro-immune interactions after acute colitis. DESIGN: Inflammation was compared in mouse models of health, acute tri-nitrobenzene sulphonic acid (TNBS) colitis, Remission and Reactivated colitis. Cytokine concentrations were compared by ELISA in-situ and in explanted colon tissue. Colonic infiltration by CD11b/F4-80 macrophage, CD4 THELPER (TH) and CD8 TCYTOTOXIC (TC) and α4ß7 expression on mesenteric lymph node (MLN) TH and TC was determined by flow cytometry. Cytokine and effector receptor mRNA expression was determined on colo-rectal afferent neurons and the mechanisms underlying cytokinergic effects on high-threshold colo-rectal afferent function were investigated using electrophysiology. RESULTS: Colonic damage, MPO activity, macrophage infiltration, IL-1ß and IL-6 concentrations were lower in Reactivated compared to Acute colitis. TH infiltration and α4ß7 expression on TH MLN was increased in Remission but not Acute colitis. IFN-γ concentrations, TH infiltration and α4ß7 expression on TH and TC MLN increased in Reactivated compared to Acute colitis. Reactivated explants secreted more IL-1ß and IL-6 than Acute explants. IL-6 and TNF-α inhibited colo-rectal afferent mechanosensitivity in Remission mice via a BKCa dependent mechanism. CONCLUSIONS: Acute colitis persistently alters immune responses and afferent nerve signalling pathways to successive episodes of colitis. These findings highlight the complexity of viscero-sensory neuro-immune interactions in painful remitting and relapsing diseases.


Assuntos
Colite/imunologia , Colo/metabolismo , Inflamação/imunologia , Neurônios Aferentes/imunologia , Doença Aguda , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
19.
Angew Chem Int Ed Engl ; 55(15): 4692-6, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26948522

RESUMO

α-Conotoxins are disulfide-rich peptides that target nicotinic acetylcholine receptors. Recently we identified several α-conotoxins that also modulate voltage-gated calcium channels by acting as G protein-coupled GABA(B) receptor (GABA(B)R) agonists. These α-conotoxins are promising drug leads for the treatment of chronic pain. To elucidate the diversity of α-conotoxins that act through this mechanism, we synthesized and characterized a set of peptides with homology to α-conotoxins known to inhibit high voltage-activated calcium channels via GABA(B)R activation. Remarkably, all disulfide isomers of the active α-conotoxins Pu1.2 and Pn1.2, and the previously studied Vc1.1 showed similar levels of biological activity. Structure determination by NMR spectroscopy helped us identify a simplified biologically active eight residue peptide motif containing a single disulfide bond that is an excellent lead molecule for developing a new generation of analgesic peptide drugs.


Assuntos
Motivos de Aminoácidos , Bloqueadores dos Canais de Cálcio/farmacologia , Conotoxinas/química , Cisteína/análise , Receptores de GABA-B/metabolismo , Sequência de Aminoácidos , Animais , Conotoxinas/farmacologia , Humanos , Receptores de GABA-B/química , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Xenopus
20.
J Med Chem ; 59(6): 2381-95, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-26859603

RESUMO

Opioid receptor screening of a conopeptide library led to a novel selective κ-opioid agonist peptide (conorphin T). Intensive medicinal chemistry, guided by potency, selectivity, and stability assays generated a pharmacophore model supporting rational design of highly potent and selective κ-opioid receptor (KOR) agonists (conorphins) with exceptional plasma stability. Conorphins are defined by a hydrophobic benzoprolyl moiety, a double arginine sequence, a spacer amino acid followed by a hydrophobic residue and a C-terminal vicinal disulfide moiety. The pharmacophore model was supported by computational docking studies, revealing receptor-ligand interactions similar to KOR agonist dynorphin A (1-8). A conorphin agonist inhibited colonic nociceptors in a mouse tissue model of chronic visceral hypersensitivity, suggesting the potential of KOR agonists for the treatment of chronic abdominal pain. This new conorphine KOR agonist class and pharmacophore model provide opportunities for future rational drug development and probes for exploring the role of the κ-opioid receptor.


Assuntos
Analgésicos/farmacologia , Caramujo Conus/química , Dinorfinas/farmacologia , Receptores Opioides kappa/agonistas , Dor Abdominal/tratamento farmacológico , Animais , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/biossíntese , Ensaios de Triagem em Larga Escala , Hipersensibilidade/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Neurônios Aferentes/efeitos dos fármacos , Biblioteca de Peptídeos , Ratos , Ratos Wistar , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA