Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Extracell Vesicles ; 11(10): e12269, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36271885

RESUMO

Small Extracellular Vesicles (sEVs) are 50-200 nm in diameter vesicles delimited by a lipid bilayer, formed within the endosomal network or derived from the plasma membrane. They are secreted in various biological fluids, including airway nasal mucus. The goal of this work was to understand the role of sEVs present in the mucus (mu-sEVs) produced by human nasal epithelial cells (HNECs) in SARS-CoV-2 infection. We show that uninfected HNECs produce mu-sEVs containing SARS-CoV-2 receptor ACE2 and activated protease TMPRSS2. mu-sEVs cleave prefusion viral Spike proteins at the S1/S2 boundary, resulting in higher proportions of prefusion S proteins exposing their receptor binding domain in an 'open' conformation, thereby facilitating receptor binding at the cell surface. We show that the role of nasal mu-sEVs is to complete prefusion Spike priming performed by intracellular furin during viral egress from infected cells. This effect is mediated by vesicular TMPRSS2 activity, rendering SARS-CoV-2 virions prone to entry into target cells using the 'early', TMPRSS2-dependent pathway instead of the 'late', cathepsin-dependent route. These results indicate that prefusion Spike priming by mu-sEVs in the nasal cavity plays a role in viral tropism. They also show that nasal mucus does not protect from SARS-CoV-2 infection, but instead facilitates it.


Assuntos
COVID-19 , Vesículas Extracelulares , Humanos , Glicoproteína da Espícula de Coronavírus/química , Furina , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Provírus/metabolismo , Bicamadas Lipídicas , Internalização do Vírus , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Catepsinas
2.
Viruses ; 14(9)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36146735

RESUMO

Immunocompromised individuals generally fail to mount efficacious immune humoral responses following vaccination. The emergence of SARS-CoV-2 variants of concern has raised the question as to whether levels of anti-spike protein antibodies achieved after two or three doses of the vaccine efficiently protect against breakthrough infection in the context of immune suppression. We used a fluorescence-based neutralization assay to test the sensitivity of SARS-CoV-2 variants (ancestral variant, Beta, Delta, and Omicron BA.1) to the neutralizing response induced by vaccination in highly immunosuppressed allogeneic HSCT recipients, tested after two and three doses of the BNT162b2 vaccine. We show that neutralizing antibody responses to the Beta and Delta variants in most immunocompromised HSCT recipients increased after three vaccine doses up to values similar to those observed in twice-vaccinated healthy adults and were significantly lower against Omicron BA.1. Overall, neutralization titers correlated with the amount of anti-S-RBD antibodies measured by means of enzyme immunoassay, indicating that commercially available assays can be used to quantify the anti-S-RBD antibody response as a reliable surrogate marker of humoral immune protection in both immunocompetent and immunocompromised individuals. Our findings support the recommendation of additional early vaccine doses as a booster of humoral neutralizing activity against emerging variants, in HSCT immunocompromised patients. In the context of Omicron circulation, it further emphasizes the need for reinforcement of preventive measures including the administration of monoclonal antibodies in this high-risk population.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Vacinas Virais , Adulto , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2
3.
Artigo em Inglês | MEDLINE | ID: mdl-32179525

RESUMO

The quinoline MK-571 is the most commonly used inhibitor of multidrug resistance protein-1 (MRP-1) but was originally developed as a cysteinyl leukotriene receptor 1 (CysLTR1) antagonist. While studying the modulatory effect of MRP-1 on anti-hepatitis C virus (HCV) direct-acting antiviral (DAA) efficiency, we observed an unexpected anti-HCV effect of compound MK-571 alone. This anti-HCV activity was characterized in Huh7.5 cells stably harboring a subgenomic genotype 1b replicon. A dose-dependent decrease of HCV RNA levels was observed upon MK-571 administration, with a 50% effective concentration (EC50 ± standard deviation) of 9 ± 0.3 µM and a maximum HCV RNA level reduction of approximatively 1 log10 MK-571 also reduced the replication of the HCV full-length J6/JFH1 model in a dose-dependent manner. However, probenecid and apigenin homodimer (APN), two specific inhibitors of MRP-1, had no effect on HCV replication. In contrast, the CysLTR1 antagonist SR2640 increased HCV-subgenomic replicon (SGR) RNA levels in a dose-dependent manner, with a maximum increase of 10-fold. In addition, a combination of natural CysLTR1 agonist (LTD4) or antagonists (zafirlukast, cinalukast, and SR2640) with MK-571 completely reversed its antiviral effect, suggesting its anti-HCV activity is related to CysLTR1 rather to MRP-1 inhibition. In conclusion, we showed that MK-571 inhibits HCV replication in hepatoma cell cultures by acting as a CysLTR1 receptor antagonist, thus unraveling a new host-virus interaction in the HCV life cycle.


Assuntos
Hepatite C Crônica , Hepatite C , Quinolinas , Antivirais/farmacologia , Hepacivirus/genética , Humanos , Propionatos , Quinolinas/farmacologia , Receptores de Leucotrienos , Replicon , Replicação Viral
4.
Gastroenterology ; 157(5): 1368-1382, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336123

RESUMO

BACKGROUND & AIMS: Hepatic ischemia/reperfusion injury is a complication of liver surgery that involves mitochondrial dysfunction resulting from mitochondrial permeability transition pore (mPTP) opening. Cyclophilin D (PPIF or CypD) is a peptidyl-prolyl cis-trans isomerase that regulates mPTP opening in the inner mitochondrial membrane. We investigated whether and how recently created small-molecule inhibitors of CypD prevent opening of the mPTP in hepatocytes and the resulting effects in cell models and livers of mice undergoing ischemia/reperfusion injury. METHODS: We measured the activity of 9 small-molecule inhibitors of cyclophilins in an assay of CypD activity. The effects of the small-molecule CypD inhibitors or vehicle on mPTP opening were assessed by measuring mitochondrial swelling and calcium retention in isolated liver mitochondria from C57BL/6J (wild-type) and Ppif-/- (CypD knockout) mice and in primary mouse and human hepatocytes by fluorescence microscopy. We induced ischemia/reperfusion injury in livers of mice given a small-molecule CypD inhibitor or vehicle before and during reperfusion and collected samples of blood and liver for histologic analysis. RESULTS: The compounds inhibited peptidyl-prolyl isomerase activity (half maximal inhibitory concentration values, 0.2-16.2 µmol/L) and, as a result, calcium-induced mitochondrial swelling, by preventing mPTP opening (half maximal inhibitory concentration values, 1.4-132 µmol/L) in a concentration-dependent manner. The most potent inhibitor (C31) bound CypD with high affinity and inhibited swelling in mitochondria from livers of wild-type and Ppif-/- mice (indicating an additional, CypD-independent effect on mPTP opening) and in primary human and mouse hepatocytes. Administration of C31 in mice with ischemia/reperfusion injury before and during reperfusion restored hepatic calcium retention capacity and oxidative phosphorylation parameters and reduced liver damage compared with vehicle. CONCLUSIONS: Recently created small-molecule inhibitors of CypD reduced calcium-induced swelling in mitochondria from mouse and human liver tissues. Administration of these compounds to mice during ischemia/reperfusion restored hepatic calcium retention capacity and oxidative phosphorylation parameters and reduced liver damage. These compounds might be developed to protect patients from ischemia/reperfusion injury after liver surgery or for other hepatic or nonhepatic disorders related to abnormal mPTP opening.


Assuntos
Inibidores Enzimáticos/farmacologia , Hepatopatias/prevenção & controle , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Peptidil-Prolil Isomerase F/antagonistas & inibidores , Traumatismo por Reperfusão/prevenção & controle , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Peptidil-Prolil Isomerase F/genética , Peptidil-Prolil Isomerase F/metabolismo , Citoproteção , Modelos Animais de Doenças , Humanos , Fígado/enzimologia , Fígado/patologia , Hepatopatias/enzimologia , Hepatopatias/genética , Hepatopatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/patologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Dilatação Mitocondrial/efeitos dos fármacos , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Transdução de Sinais
5.
Gastroenterology ; 138(3): 1112-22, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19962982

RESUMO

BACKGROUND & AIMS: Silymarin is a mixture of flavonolignans extracted from the milk thistle. Silymarin contains several molecules, including silibinin A, silibinin B, isosilibinin A, isosilibinin B, silicristin, and silidianin. Intravenous infusion of silibinin induces dose-dependent reduction of hepatitis C virus (HCV) RNA levels. The aim of this study was to test the principal isomers contained in silymarin preparations for their ability to inhibit HCV enzymatic functions and replication in different models. METHODS: The inhibitory activity of silymarin components was tested in HCV RNA-dependent RNA polymerase and NS3/4A protease enzyme assays. Their ability to inhibit replication of an HCV genotype 1b replicon model and the JFH1 infectious HCV model in cell culture was also studied. RESULTS: Silibinin A, silibinin B, their water-soluble dihydrogen succinate forms and Legalon SIL, a commercially available intravenous preparation of silibinin, inhibited HCV RNA-dependent RNA polymerase function, with inhibitory concentrations 50% of the order of 75-100 microM. Silibinin A and silibinin B also inhibited HCV genotype 1b replicon replication and HCV genotype 2a strain JFH1 replication in cell culture. None of these compounds inhibited HCV protease function. CONCLUSIONS: Silibinin A and silibinin B, as well as Legalon SIL, inhibit HCV replicon and JFH1 replication in cell culture. This effect is at least partly explained by the ability of these compounds to inhibit HCV RNA-dependent RNA polymerase activity. Our results provide a basis for the optimization and subsequent development of members of the Flavonoid family as specific HCV antivirals.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Farmacorresistência Viral , Genótipo , Hepacivirus/enzimologia , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Humanos , Mutação , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Silibina , Silimarina/farmacologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
6.
J Virol ; 76(16): 8189-99, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12134024

RESUMO

Chronic hepatitis C is a common cause of liver disease, the complications of which include cirrhosis and hepatocellular carcinoma. Treatment of chronic hepatitis C is based on the use of alpha interferon (IFN-alpha). Recently, indirect evidence based on mathematical modeling of hepatitis C virus (HCV) dynamics during human IFN-alpha therapy suggested that the major initial effect of IFN-alpha is to block HCV virion production or release. Here, we used primary cultures of healthy, uninfected human hepatocytes to show that: (i) healthy human hepatocytes can be infected in vitro and support HCV genome replication, (ii) hepatocyte treatment with IFN-alpha results in expression of IFN-alpha-induced genes, and (iii) IFN-alpha inhibits HCV replication in infected human hepatocytes. These results show that IFN-alpha acts primarily through its nonspecific antiviral effects and suggest that primary cultures of human hepatocytes may provide a good model to study intrinsic HCV resistance to IFN-alpha.


Assuntos
Hepacivirus/efeitos dos fármacos , Hepacivirus/fisiologia , Interferon-alfa/farmacologia , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , Sequência de Bases , Células Cultivadas , Genoma Viral , Hepacivirus/genética , Hepacivirus/patogenicidade , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/virologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Técnicas In Vitro , Interferon alfa-2 , Modelos Biológicos , Mutação , RNA Viral/biossíntese , RNA Viral/genética , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA