Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biomed Pharmacother ; 170: 115970, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042116

RESUMO

The secretome, or conditioned medium (CM), from Mesenchymal Stem/stromal Cells (MSCs) has recently emerged as a promising cell-free therapeutic against osteoarthritis (OA), capable of promoting cartilage regeneration and immunoregulation. Priming MSCs with 10 ng/ml tumor necrosis factor α (TNFα) and/or 10 ng/ml interleukin 1ß (IL-1ß) aims at mimicking the pathological milieu of OA joints in order to target their secretion towards a pathology-tailored phenotype. Here we compare the composition of the CM obtained after 24 or 72 h from untreated and cytokine-treated adipose-derived MSCs (ASCs). The 72-hour double-primed CM presents a higher total protein yield, a larger number of extracellular vesicles, and a greater concentration of bioactive lipids, in particular sphingolipids, fatty acids, and eicosanoids. Moreover, the levels of several factors involved in immunomodulation and regeneration, such as TGF-ß1, PGE2, and CCL-2, are strongly upregulated. Additionally, the differential profiling of 80 bioactive molecules indicates that primed CM is enriched in immune cell chemotaxis and migration factors. Our results indicate that pre-conditioning ASCs with inflammatory cytokines can modulate the composition of their CM, promoting the release of factors with recognized anti-inflammatory, chondroprotective, and immunoregulatory properties.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Humanos , Citocinas/metabolismo , Secretoma , Osteoartrite/terapia , Osteoartrite/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
Pathology ; 55(3): 329-334, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36428107

RESUMO

Central giant cell granulomas (CGCG) are rare intraosseous osteolytic lesions of uncertain aetiology. Despite the benign nature of this neoplasia, the lesions can rapidly grow and become large, painful, invasive, and destructive. The identification of molecular drivers could help in the selection of targeted therapies for specific cases. TRPV4, KRAS and FGFR1 mutations have been associated with these lesions but no correlation between the mutations and patient features was observed so far. In this study, we analysed 17 CGCG cases of an Italian cohort and identified an interesting and significant (p=0.0021) correlation between FGFR1 mutations and age. In detail, FGFR1 mutations were observed frequently and exclusively in CGCG from young (<18 years old) patients (4/5 lesions, 80%). Furthermore, the combination between ours and previously published data confirmed a significant difference in the frequency of FGFR1 mutations in CGCG from patients younger than 18 years at the time of diagnosis (9/23 lesions, 39%) when compared to older patients (1/31 lesions, 0.03%; p=0.0011), thus corroborating our observation in a cohort of 54 patients. FGFR1 variants in young CGCG patients could favour fast lesion growth, implying that they seek medical attention earlier. Our observation might help prioritise candidates for FGFR1 testing, thus opening treatment options with FGFR inhibitors.


Assuntos
Granuloma de Células Gigantes , Humanos , Adolescente , Granuloma de Células Gigantes/genética , Granuloma de Células Gigantes/diagnóstico , Granuloma de Células Gigantes/patologia , Taxa de Mutação , Mutação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética
3.
Pharmaceutics ; 14(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745803

RESUMO

Osteoarthritis (OA) is a highly prevalent joint disease still lacking effective treatments. Its multifactorial etiology hampers the development of relevant preclinical models to evaluate innovative therapeutic solutions. In the last decade, the potential of Mesenchymal Stem Cell (MSC) secretome, or conditioned medium (CM), has emerged as an alternative to cell therapy. Here, we investigated the effects of the CM from adipose MSCs (ASCs), accounting for both soluble factors and extracellular vesicles, on human osteochondral explants. Biopsies, isolated from total knee replacement surgery, were cultured without additional treatment or with the CM from 106 ASCs, both in the absence and in the presence of 10 ng/mL TNFα. Tissue viability and several OA-related hallmarks were monitored at 1, 3 and 6 days. Specimen viability was maintained over culture. After 3 days, TNFα induced the enhancement of matrix metalloproteinase activity and glycosaminoglycan release, both efficiently counteracted by CM. The screening of inflammatory lipids, proteases and cytokines outlined interesting modulations, driving the attention to new players in the OA process. Here, we confirmed the promising beneficial action of ASC secretome in the OA context and profiled several bioactive factors involved in its progression, in the perspective of accelerating an answer to its unmet clinical needs.

4.
Int J Mol Sci ; 23(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35628386

RESUMO

Connexin 43 (Cx43) exerts pivotal functions in articular chondrocytes (CH). It is involved in the communication among cells and between cells and the extracellular environment, and it contributes to the maintenance of the correct cell phenotype. The pro-inflammatory cytokine TNFα induces a reduction in Cx43 expression in CH. Here, we studied the dynamics of this decrease in expression. We evaluated Cx43 protein and gene expression and the involvement of C-terminal domain (CTD) cleavage and proteasomal degradation. Treatments able to counteract TNFα action were also examined, together with Gap Junction (GJ) functionality and Cx43 localization. TNFα induced a significant reduction in Cx43 expression already at day 1, and the down modulation reached a peak at day 3 (-46%). The decrease was linked to neither gene expression modulation nor CTD cleavage. Differently, the proteasome inhibitor MG132 reverted TNFα effect, indicating the involvement of proteasomal degradation in Cx43 reduction. In addition, the co-treatment with the anabolic factor TGF-ß1 restored Cx43 levels. Cx43 decrease occurred both at the membrane level, where it partially influenced GJ communication, and in the nucleus. In conclusion, TNFα induced a rapid and lasting reduction in Cx43 expression mostly via the proteasome. The down modulation could be reverted by cartilage-protective factors such as MG132 and TGF-ß1. These findings suggest a possible involvement of Cx43 perturbation during joint inflammation.


Assuntos
Condrócitos , Conexina 43 , Fator de Necrose Tumoral alfa , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Conexina 43/metabolismo , Junções Comunicantes/metabolismo , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
5.
J Proteomics ; 232: 104069, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33309826

RESUMO

Conditioned medium (CM) and extracellular vesicles (EV) from Adipose-derived Stem/stromal cells (ASC) and Dermal fibroblasts (DF) represent promising tools for therapeutic applications. Which one should be preferred is still under debate and no direct comparison of their proteome has been reported yet. Here, we apply quantitative proteomics to explore the protein composition of CM and EV from the two cell types. Data are available via ProteomeXchange (identifier PXD020219). We identified 1977 proteins by LC-MS/MS proteomic analysis. Unsupervised clustering analysis and PCA recognized CM and EV as separate groups. We identified 68 and 201 CM and EV specific factors. CM were enriched in proteins of endoplasmic reticulum, Golgi apparatus and lysosomes, whereas EV contained a large amount of GTPases, ribosome and translation factors. The analysis of ASC and DF secretomes revealed the presence of cell type-specific proteins. ASC-CM and -EV carried factors involved in ECM organization and immunological regulation, respectively. Conversely, DF-CM and -EV were enriched in epithelium development associated factors and -EV in Wnt signaling factors. In conclusion, this analysis provides evidence of a different protein composition between CM and EV and of the presence of cell type-specific bioactive mediators suggesting their specific future use as advanced therapy medicinal products. SIGNIFICANCE: The use of cell secretome presents several advantages over cell therapy such as the lower risks associated to the administration step and the avoidance of any potential risk of malignant transformation. The main secretome preparations consist in concentrated conditioned medium (CM) and extracellular vesicles (EV). Both of them showed well-documented therapeutic potentials. However, it is still not clear in which case it should be better to use one preparation over the other and an exhaustive comparison between their proteome has not been performed yet. The choice of the cell source is another relevant aspect that still needs to be addressed. In order to shed light on these questions we explored the protein composition of CM and EV obtained from Adipose-derived Stem/stromal Cells (ASC) and Dermal Fibroblasts (DF), by a comprehensive quantitative proteomics approach. The analysis showed a clear distinction between CM and EV proteome. CM were enriched in proteins of endoplasmic reticulum, Golgi apparatus and lysosomes, whereas EV contained a large amount of GTPases, ribosome and translation-related factors. Furthermore, the analysis of ASC and DF secretomes revealed specific biological processes for the different cell products. ASC secretome presented factors involved in ECM organization (hyaluronan and glycosaminoglycan metabolism) and immunological regulation (e.g. macrophage and IkB/NFkB signaling regulation), respectively. On the other hand, DF-CM and -EV were both enriched in epithelium development associated factors, whilst DF-CM in proteins involved in cellular processes regulation and -EV in Wnt signaling factors. In conclusion, our study shed a light on the different protein composition of CM and EV of two promising cell types, spanning from basic processes involved in secretion to specific pathways supporting their therapeutic potential and their possible future use as advanced therapy medicinal products.


Assuntos
Vesículas Extracelulares , Proteômica , Cromatografia Líquida , Meios de Cultivo Condicionados , Fibroblastos , Humanos , Células Estromais , Espectrometria de Massas em Tandem
6.
Stem Cell Res Ther ; 11(1): 521, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33272318

RESUMO

BACKGROUND: In the last years, several clinical trials have proved the safety and efficacy of adipose-derived stem/stromal cells (ASC) in contrasting osteoarthritis (OA). Since ASC act mainly through paracrine mechanisms, their secretome (conditioned medium, CM) represents a promising therapeutic alternative. ASC-CM is a complex cocktail of proteins, nucleic acids, and lipids released as soluble factors and/or conveyed into extracellular vesicles (EV). Here, we investigate its therapeutic potential in an in vitro model of OA. METHODS: Human articular chondrocytes (CH) were induced towards an OA phenotype by 10 ng/ml TNFα in the presence of either ASC-CM or EV, both deriving from 5 × 105 cells, to evaluate the effect on hypertrophic, catabolic, and inflammatory markers. RESULTS: Given the same number of donor cells, our data reveal a higher therapeutic potential of ASC-CM compared to EV alone that was confirmed by its enrichment in chondroprotective factors among which TIMP-1 and -2 stand out. In details, only ASC-CM significantly decreased MMP activity (22% and 29% after 3 and 6 days) and PGE2 expression (up to 40% at day 6) boosted by the inflammatory cytokine. Conversely, both treatments down-modulated of ~ 30% the hypertrophic marker COL10A1. CONCLUSIONS: These biological and molecular evidences of ASC-CM beneficial action on CH with an induced OA phenotype may lay the basis for its future clinical translation as a cell-free therapeutic in the management of OA.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteoartrite , Condrócitos , Meios de Cultivo Condicionados , Humanos , Osteoartrite/terapia
7.
Stem Cell Res ; 38: 101463, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31108390

RESUMO

Recent clinical trials show the efficacy of Adipose-derived Stromal Cells (ASCs) in contrasting the osteoarthritis scenario. Since it is quite accepted that ASCs act predominantly through a paracrine mechanism, their secretome may represent a valid therapeutic substitute. The aim of this study was to investigate the effects of ASC conditioned medium (ASC-CM) on TNFα-stimulated human primary articular chondrocytes (CHs). CHs were treated with 10 ng/ml TNFα and/or ASC-CM (1:5 recipient:donor cell ratio). ASC-CM treatment blunted TNFα-induced hypertrophy, reducing the levels of Osteocalcin (-37%), Collagen X (-18%) and MMP-13 activity (-61%). In addition, it decreased MMP-3 activity by 59%. We showed that the reduction of MMP activity correlates to the abundance of TIMPs (Tissue Inhibitors of MMPs) in ASC secretome (with TIMP-1 exceeding 200 ng/ml and TIMP-2/3 in the ng/ml range) rather than to a direct down-modulation of the expression and/or release of these proteases. In addition, ASC secretome contains high levels of other cartilage protecting factors, i.e. OPG and DKK-1. ASC-CM comprises cartilage-protecting factors and exerts anti-hypertrophic and anti-catabolic effects on TNFα-stimulated CHs in vitro. Our results support a future use of this cell-derived but cell-free product as a therapeutic approach in the management of osteoarthritis.


Assuntos
Tecido Adiposo/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Tecido Adiposo/patologia , Adulto , Cartilagem Articular/patologia , Condrócitos/patologia , Feminino , Humanos , Hipertrofia , Masculino , Células-Tronco Mesenquimais/patologia , Pessoa de Meia-Idade , Osteoartrite/patologia
8.
J Control Release ; 302: 2-18, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30890444

RESUMO

Localization of chemotherapy at the tumor site can improve therapeutic efficacy and reduce systemic toxicity. In previous studies we have shown that mesenchymal stromal cells (MSCs) isolated from bone marrow or adipose tissue can be loaded with the anti-cancer drug Paclitaxel (PTX) and kill cancer cells when localized nearby. We here investigated the capacity of human micro-fragmented adipose tissue (MFAT), used as a natural scaffold of MSCs, to deliver PTX with the idea to improve local drug concentration and to prolong the therapeutic activity. Surprisingly, we found that both fresh but also devitalized MFAT (DMFAT) (by freezing/thawing procedure) were able to deliver and release significant amount of PTX, killing several human cancer cell lines in vitro with a long lasting activity. In an orthotopic mice model of Neuroblastoma (NB) transplant, DMFAT loaded with PTX prevents or delays NB relapse when placed in the surgical area of tumor resection, without any collateral toxicity. We concluded that MFAT, but also DMFAT, may represent very innovative natural biomaterials able to localize and release anti-cancer molecules at the tumor site, helping to fight cancer in human.


Assuntos
Tecido Adiposo/química , Antineoplásicos/química , Produtos Biológicos/química , Portadores de Fármacos/química , Neuroblastoma/tratamento farmacológico , Paclitaxel/química , Tecido Adiposo/metabolismo , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Produtos Biológicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos , Feminino , Corantes Fluorescentes/química , Humanos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais , Imagem Óptica , Paclitaxel/farmacocinética , Paclitaxel/uso terapêutico , Conformação Proteica
9.
Pharmaceutics ; 11(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717104

RESUMO

Interdental papilla are an interesting source of mesenchymal stromal cells (GinPaMSCs), which are easy to isolate and expand in vitro. In our laboratory, GinPaMSCs were isolated, expanded, and characterized by studying their secretome before and after priming with paclitaxel (PTX). The secretome of GinPaMSCs did not affect the growth of cancer cell lines tested in vitro, whereas the secretome of GinPaMSCs primed with paclitaxel (GinPaMSCs/PTX) exerted a significant anticancer effect. GinPaMSCs were able to uptake and then release paclitaxel in amounts pharmacologically effective against cancer cells, as demonstrated in vitro by the direct activity of GinPaMSCs/PTX and their secretome against both human pancreatic carcinoma and squamous carcinoma cells. PTX was associated with extracellular vesicles (EVs) secreted by cells (EVs/PTX), suggesting that PTX is incorporated into exosomes during their biogenesis. The isolation of mesenchymal stromal cells (MSCs) from gingiva is less invasive than that from other tissues (such as bone marrow and fat), and GinPaMSCs provide an optimal substrate for drug-priming to obtain EVs/PTX having anticancer activity. This research may contribute to develop new strategies of cell-mediated drug delivery by EVs that are easy to store without losing function, and could have a superior safety profile in therapy.

10.
Biomed Pharmacother ; 108: 111-118, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30218855

RESUMO

In this study, the in vitro stability of cisplatin (CisPt) and cationic platinum(II)-complex (caPt(II)-complex) and their in vitro activity (antiproliferative and anti-angiogenic properties) were investigated against three aggressive human tumor cell lines. caPt(II)-complex shown a high stability until 9 days of treatment and displayed a significant and higher activity than CisPt against both NCI-H28 mesothelioma (19.37 ± 9.57 µM versus 34.66 ± 7.65 µM for CisPt) and U87 MG glioblastoma (19.85 ± 0.97 µM versus 54.14 ± 3.19 for CisPt). Mesenchymal Stromal Cells (AT-MSCs) showed a significant different sensitivity (IC50 = 71.9 ± 15.1 µM for caPt(II)-complex and 8.7 ± 4.5 µM for CisPt) to the antiproliferative activity of caPt(II)-complex and CisPt. The ability of MSCs to uptake both the drugs in a similar amount of 2.49 pM /cell, suggested a possible development of new therapies based on cell mediated drug delivery.


Assuntos
Cisplatino/farmacologia , Células-Tronco Mesenquimais/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Platina/farmacologia , Tecido Adiposo/citologia , Adulto , Antineoplásicos/farmacologia , Cátions , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Temperatura
11.
Sci Rep ; 7(1): 9376, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28839168

RESUMO

Human mesenchymal stromal cells (MSCs) have been widely investigated both for regenerative medicine and their antinflammatory/immunomodulatory capacity. However, their ability to home pathological tissues suggested the development of strategies for using MSCs as carrier to deliver drug into tumor microenvironment. MSCs obtained from different tissues can be loaded in vitro with anti-cancer drugs by a simple procedures. In this report, we studied MSCs isolated and expanded from gingival papilla (GinPa-MSCs), by testing their ability to uptake and release three important anti-neoplastic drugs: Paclitaxel (PTX), Doxorubicin (DXR) and Gemcitabine (GCB). The efficacy of drugs releasing GinPa-MSCs was studied on a pancreatic cancer cell line and confirmed in vitro against a line of tongue squamous cell carcinoma (SCC154). Our results demonstrated that GinPa-MSCs efficiently incorporate the drugs and then released them in active form and in sufficient amount to produce a dramatic inhibition of squamous cell carcinoma growth in vitro. If compared with other MSCs sources, the collection of GinPa-MSCs is poorly invasive and cells can be easily expanded and efficiently loaded with anti cancer drugs. In particular, gemcitabine loaded GinPa-MSCs provide a good "cell-mediated drug delivery system" for a future potential application in the context of the oral oncology.


Assuntos
Antineoplásicos/administração & dosagem , Carcinoma de Células Escamosas/metabolismo , Comunicação Celular , Gengiva/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Neoplasias Bucais/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos
12.
Sci Rep ; 7(1): 9820, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28852131

RESUMO

Extracellular vesicles (EVs) from mesenchymal stromal cells (MSC) are emerging as valuable therapeutic agents for tissue regeneration and immunomodulation, but their clinical applications have so far been limited by the technical restraints of current isolation and characterisation procedures. This study shows for the first time the successful application of Raman spectroscopy as label-free, sensitive and reproducible means of carrying out the routine bulk characterisation of MSC-derived vesicles before their use in vitro or in vivo, thus promoting the translation of EV research to clinical practice. The Raman spectra of the EVs of bone marrow and adipose tissue-derived MSCs were compared with human dermal fibroblast EVs in order to demonstrate the ability of the method to distinguish the vesicles of the three cytotypes automatically with an accuracy of 93.7%. Our data attribute a Raman fingerprint to EVs from undifferentiated and differentiated cells of diverse tissue origin, and provide insights into the biochemical characteristics of EVs from different sources and into the differential contribution of sphingomyelin, gangliosides and phosphatidilcholine to the Raman spectra themselves.


Assuntos
Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Análise Espectral Raman , Biomarcadores , Vesículas Extracelulares/ultraestrutura , Humanos , Células-Tronco Mesenquimais/ultraestrutura , Tetraspanina 29/metabolismo , Tetraspanina 30/metabolismo
13.
J Control Release ; 262: 104-117, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28736264

RESUMO

It has been demonstrated that the biological effector of mesenchymal stem/stromal cells (MSCs) is their secretome, which is composed of a heterogeneous pool of bioactive molecules, partially enclosed in extracellular vesicles (EVs). Therefore, the MSC secretome (including EVs) has been recently proposed as possible alternative to MSC therapy. The secretome can be considered as a protein-based biotechnological product, it is probably safer compared with living/cycling cells, it presents virtually lower tumorigenic risk, and it can be handled, stored and sterilized as an Active Pharmaceutical/Principle Ingredient (API). EVs retain some structural and technological analogies with synthetic drug delivery systems (DDS), even if their potential clinical application is also limited by the absence of reproducible/scalable isolation methods and Good Manufacturing Practice (GMP)-compliant procedures. Notably, EVs secreted by MSCs preserve some of their parental cell features such as homing, immunomodulatory and regenerative potential. This review focuses on MSCs and their EVs as APIs, as well as DDS, considering their ability to reach inflamed and damaged tissues and to prolong the release of encapsulated drugs. Special attention is devoted to the illustration of innovative therapeutic approaches in which nanomedicine is successfully combined with stem cell therapy, thus creating a novel class of "next generation drug delivery systems."


Assuntos
Sistemas de Liberação de Medicamentos , Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Humanos
14.
J Craniofac Surg ; 27(3): 727-32, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27092915

RESUMO

In the study, we assess a rapid prototyped scaffold composed of 30/70 hydroxyapatite (HA) and beta-tricalcium-phosphate (ß-TCP) loaded with human adipose-derived stem cells (hASCs) to determine cell proliferation, differentiation toward osteogenic lineage, adhesion and penetration on/into the scaffold.In this in vitro study, hASCs isolated from fat tissue discarded after plastic surgery were expanded, characterized, and then loaded onto the scaffold. Cells were tested for: viability assay (Alamar Blue at days 3, 7 and Live/Dead at day 32), differentiation index (alkaline phosphatase activity at day 14), scaffold adhesion (standard error of the mean analysis at days 5 and 18), and penetration (ground sections at day 32).All the hASC populations displayed stemness markers and the ability to differentiate toward adipogenic and osteogenic lineages.Cellular vitality increased between 3 and 7 days, and no inhibitory effect by HA/ß-TCP was observed. Under osteogenic stimuli, scaffold increased alkaline phosphatase activity of +243% compared with undifferentiated samples. Human adipose-derived stem cells adhered on HA/ß-TCP surface through citoplasmatic extensions that occupied the macropores and built networks among them. Human adipose derived stem cells were observed in the core of HA/ß-TCP. The current combination of hASCs and HA/ß-TCP scaffold provided encouraging results. If authors' data will be confirmed in preclinical models, the present engineering approach could represent an interesting tool in treating large bone defects.


Assuntos
Adipócitos/citologia , Fosfatos de Cálcio/farmacologia , Hidroxiapatitas/farmacologia , Osteogênese/efeitos dos fármacos , Células-Tronco/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Pessoa de Meia-Idade
15.
Differentiation ; 92(5): 291-297, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27087652

RESUMO

Adipose-derived and bone marrow stem/stromal cells (ASCs and BMSCs) have been often compared for their application in regenerative medicine, and several factors sustaining their differentiation and efficacy have been investigated. 17 ß-estradiol (E2) has been reported to influence some functions of progenitor cells. Here we studied the effects of 10 and 100nM E2 on ASC and BMSC vitality, proliferation and differentiation towards osteogenic and adipogenic lineages. E2 did not modulate ASC and BMSC vitality and growth rate, while the hormone produced a pro-adipogenic effect on both mesenchymal stem/stromal cells (MSCs). In particular, the synergy between 7-day pre-treatment and 100nM E2 led to the most evident result, increasing lipid vacuoles formation in ASCs and BMSCs of +44% and +82%, respectively. Despite the fact that E2 did not alter collagen deposition of osteo-induced MSCs, we observed a different modulation of ASC and BMSC alkaline phosphatase (ALP) activity. Indeed, this osteogenic marker was always enhanced by 17 ß-estradiol in BMSCs, and 7-day pre-treatment with 100nM E2 increased it of about 70%. In contrast, E2 weakened ASC osteogenic potential, reducing their ALP activity of about 20%, with the most evident effect on ASCs isolated from pre-menopausal women (-30%). Finally, we identified an estrogen receptor α (ERα) variant of about 37kDa expressed in both MSCs. Interestingly, adipogenic stimuli drastically reduced its expression, while osteogenic ones mildly increased this isoform in BMSCs only. In conclusion, E2 positively affected the adipogenic process of both MSCs while it favored osteogenic induction in BMSCs only, and both mesenchymal progenitors expressed a novel 37kDa ER-α variant whose expression was modulated during differentiation.


Assuntos
Adipogenia/efeitos dos fármacos , Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Adipogenia/genética , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Estradiol/administração & dosagem , Receptor alfa de Estrogênio/genética , Humanos , Osteogênese/genética , Medicina Regenerativa
16.
Expert Opin Drug Deliv ; 13(6): 789-98, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26986001

RESUMO

OBJECTIVE: Gingival tissue is composed of cell types that contribute to the body's defense against many agents in oral environment, wound healing and tissue regeneration. Thanks to their easy and scarcely invasive withdrawal procedure, interdental papilla provide a good source of mesenchymal stromal cells (GinPa-MSCs). We isolated GinPa-MSCs and verified their ability to uptake/release the anticancer agent Paclitaxel (PTX). METHODS: In vitro expanded GinPa-MSCs were characterized for CD markers by FACS, tested for differentiation ability and analyzed by TEM. Their ability to uptake/release PTX was assessed according to a standardized procedure. RESULTS: The CD expression and chondro-adipo-osteo differentiation ability confirmed the mesenchymal feature of GinPa-MSCs. Surprisingly, 28% of GinPa-MSCs expressed CD14 marker and had an impressive pinocytotic activity. GinPa-MSCs were able to take up and release a sufficient amount of PTX to demonstrate effective in vitro activity against pancreatic carcinoma cells, suggesting that the drug was not inactivated. CONCLUSIONS: The procedure to obtain MSCs from interdental papilla is less invasive than that used for both bone marrow and adipose tissue, GinPa-MSCs are easy to expand and can be efficiently loaded with PTX. Taken together these qualities suggest that GinPa-MSCs may prove to be a good tool for cell-mediated drug delivery in cancer, particularly if related to stomatognathic system.


Assuntos
Sistemas de Liberação de Medicamentos , Gengiva/citologia , Células-Tronco Mesenquimais/citologia , Paclitaxel/administração & dosagem , Tecido Adiposo/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Cicatrização/efeitos dos fármacos
17.
J Craniofac Surg ; 27(2): 398-404, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26872279

RESUMO

Human adipose-derived stem cells (hASCs) have been proposed as a possible therapy for tissue regeneration in aesthetic, plastic, and reconstructive surgery. Today, platelet concentrates are used in a wide range of disciplines, but their storage has become a controversial aspect. The purpose of this in vitro study was to evaluate the effect of plasma rich in growth factors (PRGF), after a freeze-thawing cycle, on the proliferation and biological activity of progenitor cells involved in soft tissue healing. Different formulations of activated PRGF were added to hASCs cultured in serum-free medium. Cell proliferation was assessed by MTT test and cell count up to 7 and 12-day incubation. Osteo-differentiation ability of hASCs was also tested after 7 and 14-day incubation by alkaline phosphatase assay. The effects of 4 PRGF preparations (fresh/frozen and with/without platelets) were compared with corresponding formulations of plasma poor in growth factors and with standard medium. hASCs cultured in the presence of platelet concentrates increased proliferation rate with respect to cells grown in standard medium without significant differences among all the tested plasma formulations on cell viability up to 12 days of culture. PRGF activity is preserved after cryopreservation and platelet-rich preparations promoted osteo-differentiation of hASCs at day 7. In conclusion, PRGF supports the proliferation and the differentiation of progenitor cells in vitro also when applied after cryopreservation. Platelet concentrates, either alone or in combination with mesenchymal stem cells, might be a valuable tool in the field of tissue regeneration.


Assuntos
Adipócitos/citologia , Plaquetas/citologia , Criopreservação/métodos , Congelamento , Células-Tronco Mesenquimais/citologia , Células-Tronco/citologia , Adulto , Contagem de Células , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Feminino , Humanos , Masculino , Adulto Jovem
18.
Biomed Res Int ; 2014: 470983, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25197647

RESUMO

Neuropathic pain (NP) is a highly invalidating disease resulting as consequence of a lesion or disease affecting the somatosensory system. All the pharmacological treatments today in use give a long lasting pain relief only in a limited percentage of patients before pain reappears making NP an incurable disease. New approaches are therefore needed and research is testing stem cell usage. Several papers have been written on experimental neuropathic pain treatment using stem cells of different origin and species to treat experimental NP. The original idea was based on the capacity of stem cell to offer a totipotent cellular source for replacing injured neural cells and for delivering trophic factors to lesion site; soon the researchers agreed that the capacity of stem cells to contrast NP was not dependent upon their regenerative effect but was mostly linked to a bidirectional interaction between the stem cell and damaged microenvironment resident cells. In this paper we review the preclinical studies produced in the last years assessing the effects induced by several stem cells in different models of neuropathic pain. The overall positive results obtained on pain remission by using stem cells that are safe, of easy isolation, and which may allow an autologous transplant in patients may be encouraging for moving from bench to bedside, although there are several issues that still need to be solved.


Assuntos
Células-Tronco Adultas/citologia , Neuralgia/terapia , Transplante de Células-Tronco , Adulto , Animais , Células da Medula Óssea/citologia , Humanos
19.
Chem Senses ; 39(7): 617-29, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25056732

RESUMO

We used immunodeficient mice, whose dorsomedial olfactory region was permanently damaged by dichlobenil inoculation, to test the neuroregenerative properties of transplanted human adipose tissue-derived stem cells after 30 and 60 days. Analysis of polymerase chain reaction bands revealed that stem cells preferentially engrafted in the lesioned olfactory epithelium compared with undamaged mucosa of untreated transplanted mice. Although basal cell proliferation in untransplanted lesioned mice did not give rise to neuronal cells in the olfactory mucosa, we observed clusters of differentiating olfactory cells in transplanted mice. After 30 days, and even more at 60 days, epithelial thickness was partially recovered to normal values, as also the immunohistochemical properties. Functional reactivity to odorant stimulation was also confirmed through electro-olfactogram recording in the dorsomedial epithelium. Furthermore, we demonstrated that engrafted stem cells fused with mouse cells in the olfactory organ, even if heterokaryons detected were too rare to hypothesize they directly repopulated the lesioned epithelium. The data reported prove that the migrating transplanted stem cells were able to induce a neuroregenerative process in a specific lesioned sensory area, enforcing the perspective that they could become an available tool for stem cell therapy.


Assuntos
Tecido Adiposo/citologia , Regeneração Nervosa/efeitos dos fármacos , Células Neuroepiteliais/efeitos dos fármacos , Nitrilas/farmacologia , Mucosa Olfatória/efeitos dos fármacos , Transplante de Células-Tronco , Células-Tronco/citologia , Adulto , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Neuroepiteliais/citologia , Células Neuroepiteliais/metabolismo , Células Neuroepiteliais/patologia , Nitrilas/administração & dosagem , Mucosa Olfatória/citologia , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia
20.
Stem Cell Res Ther ; 4(6): 148, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24330736

RESUMO

INTRODUCTION: Adipose-derived stem cells (ASCs) are progenitor cells used in bone tissue engineering and regenerative medicine. Despite subcutaneous adipose tissue being more abundant, the buccal fat pad (BFP) is easily accessible for dentists and maxillofacial surgeons. For this reason, considering the need for preclinical study and the swine as an optimal animal model in tissue engineering applications, we compared the features of porcine ASCs (pASCs) from both tissue-harvesting sites. METHODS: ASCs were isolated from interscapular subcutaneous adipose tissue (ScI) and buccal fat pads of six swine. Cells were characterized for their stemness and multipotent features. Moreover, their osteogenic ability when cultured on titanium disks and silicon carbide-plasma-enhanced chemical vapor-deposition fragments, and their growth in the presence of autologous and heterologous serum were also assessed. RESULTS: Independent of the harvesting site, no differences in proliferation, viability, and clonogenicity were observed among all the pASC populations. Furthermore, when induced toward osteogenic differentiation, both ScI- and BFP-pASCs showed an increase of collagen and calcified extracellular matrix (ECM) production, alkaline phosphatase activity, and osteonectin expression, indicating their ability to differentiate toward osteoblast-like cells. In addition, they differentiated toward adipocyte-like cells, and chondrogenic induced pASCs were able to increase glycosaminoglycans (GAGs) production over time. When cells were osteoinduced on synthetic biomaterials, they significantly increased the amount of calcified ECM compared with control cells; moreover, titanium showed the osteoinductive effect on pASCs, also without chemical stimuli. Finally, these cells grew nicely in 10% FBS, and no benefits were produced by substitution with swine serum. CONCLUSIONS: Swine buccal fat pad contains progenitor cells with mesenchymal features, and they also osteo-differentiate nicely in association with synthetic supports. We suggest that porcine BFP-ASCs may be applied in preclinical studies of periodontal and bone-defect regeneration.


Assuntos
Tecido Adiposo/citologia , Células-Tronco/citologia , Gordura Subcutânea/citologia , Fosfatase Alcalina/metabolismo , Animais , Materiais Biocompatíveis/química , Diferenciação Celular , Células Cultivadas , Condrogênese , Colágeno/metabolismo , Avaliação Pré-Clínica de Medicamentos , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Doenças da Boca/cirurgia , Osteogênese , Osteonectina/metabolismo , Transplante de Células-Tronco , Células-Tronco/metabolismo , Suínos , Engenharia Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA