Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Med ; 25(12): 100971, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37675773

RESUMO

PURPOSE: ATP2B2 encodes the variant-constrained plasma-membrane calcium-transporting ATPase-2, expressed in sensory ear cells and specialized neurons. ATP2B2/Atp2b2 variants were previously linked to isolated hearing loss in patients and neurodevelopmental deficits with ataxia in mice. We aimed to establish the association between ATP2B2 and human neurological disorders. METHODS: Multinational case recruitment, scrutiny of trio-based genomics data, in silico analyses, and functional variant characterization were performed. RESULTS: We assembled 7 individuals harboring rare, predicted deleterious heterozygous ATP2B2 variants. The alleles comprised 5 missense substitutions that affected evolutionarily conserved sites and 2 frameshift variants in the penultimate exon. For 6 variants, a de novo status was confirmed. Unlike described patients with hearing loss, the individuals displayed a spectrum of neurological abnormalities, ranging from ataxia with dystonic features to complex neurodevelopmental manifestations with intellectual disability, autism, and seizures. Two cases with recurrent amino-acid variation showed distinctive overlap with cerebellar atrophy-associated ataxia and epilepsy. In cell-based studies, all variants caused significant alterations in cytosolic calcium handling with both loss- and gain-of-function effects. CONCLUSION: Presentations in our series recapitulate key phenotypic aspects of Atp2b2-mouse models and underline the importance of precise calcium regulation for neurodevelopment and cerebellar function. Our study documents a role for ATP2B2 variants in causing heterogeneous neurodevelopmental and movement-disorder syndromes.


Assuntos
Ataxia Cerebelar , Distonia , Perda Auditiva , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Camundongos , Sintomas Comportamentais , Cálcio , Ataxia Cerebelar/genética , Distonia/genética , Deficiência Intelectual/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , ATPases Transportadoras de Cálcio da Membrana Plasmática , Convulsões/genética
2.
Cell Death Dis ; 13(10): 855, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207321

RESUMO

Calcium concentration must be finely tuned in all eukaryotic cells to ensure the correct performance of its signalling function. Neuronal activity is exquisitely dependent on the control of Ca2+ homeostasis: its alterations ultimately play a pivotal role in the origin and progression of many neurodegenerative processes. A complex toolkit of Ca2+ pumps and exchangers maintains the fluctuation of cytosolic Ca2+ concentration within the appropriate threshold. Two ubiquitous (isoforms 1 and 4) and two neuronally enriched (isoforms 2 and 3) of the plasma membrane Ca2+ATPase (PMCA pump) selectively regulate cytosolic Ca2+ transients by shaping the sub-plasma membrane (PM) microdomains. In humans, genetic mutations in ATP2B1, ATP2B2 and ATP2B3 gene have been linked with hearing loss, cerebellar ataxia and global neurodevelopmental delay: all of them were found to impair pump activity. Here we report three additional mutations in ATP2B3 gene corresponding to E1081Q, R1133Q and R696H amino acids substitution, respectively. Among them, the novel missense mutation (E1081Q) immediately upstream the C-terminal calmodulin-binding domain (CaM-BD) of the PMCA3 protein was present in two patients originating from two distinct families. Our biochemical and molecular studies on PMCA3 E1081Q mutant have revealed a splicing variant-dependent effect of the mutation in shaping the sub-PM [Ca2+]. The E1081Q substitution in the full-length b variant abolished the capacity of the pump to reduce [Ca2+] in the sub-PM microdomain (in line with the previously described ataxia-related PMCA mutations negatively affecting Ca2+ pumping activity), while, surprisingly, its introduction in the truncated a variant selectively increased Ca2+ extrusion activity in the sub-PM Ca2+ microdomains. These results highlight the importance to set a precise threshold of [Ca2+] by fine-tuning the sub-PM microdomains and the different contribution of the PMCA splice variants in this regulation.


Assuntos
Ataxia Cerebelar , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Aminoácidos , Ataxia/genética , Ataxia/metabolismo , Cálcio/metabolismo , Calmodulina/genética , Membrana Celular/metabolismo , Ataxia Cerebelar/genética , Ataxia Cerebelar/metabolismo , Humanos , Mutação/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
J Biol Chem ; 298(8): 102138, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35714771

RESUMO

The plasma membrane calcium ATPase (PMCA) extrudes calcium from the cytosol to the extracellular space to terminate calcium-dependent signaling. Although the distribution of PMCA is crucial for its function, the molecular mechanisms that regulate the localization of PMCA isoforms are not well understood. PLEKHA7 is implicated by genetic studies in hypertension and the regulation of calcium handling. PLEKHA7 recruits the small adapter protein PDZD11 to adherens junctions, and together they control the trafficking and localization of plasma membrane associated proteins, including the Menkes copper ATPase. Since PDZD11 binds to the C-terminal domain of b-isoforms of PMCA, PDZD11 and its interactor PLEKHA7 could control the localization and activity of PMCA. Here, we test this hypothesis using cultured cell model systems. We show using immunofluorescence microscopy and a surface biotinylation assay that KO of either PLEKHA7 or PDZD11 in mouse kidney collecting duct epithelial cells results in increased accumulation of endogenous PMCA at lateral cell-cell contacts and PDZ-dependent ectopic apical localization of exogenous PMCA4x/b isoform. In HeLa cells, coexpression of PDZD11 reduces membrane accumulation of overexpressed PMCA4x/b, and analysis of cytosolic calcium transients shows that PDZD11 counteracts calcium extrusion activity of overexpressed PMCA4x/b, but not PMCA4x/a, which lacks the PDZ-binding motif. Moreover, KO of PDZD11 in either endothelial (bEnd.3) or epithelial (mouse kidney collecting duct) cells increases the rate of calcium extrusion. Collectively, these results suggest that the PLEKHA7-PDZD11 complex modulates calcium homeostasis by regulating the localization of PMCA.


Assuntos
Cálcio , Proteínas de Transporte , ATPases Transportadoras de Cálcio da Membrana Plasmática , Junções Aderentes/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Células HeLa , Humanos , Camundongos , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Isoformas de Proteínas/metabolismo
4.
Cell Death Dis ; 10(11): 857, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31719530

RESUMO

Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by dopaminergic neuronal loss that initiates in the substantia nigra pars compacta and by the formation of intracellular inclusions mainly constituted by aberrant α-synuclein (α-syn) deposits known as Lewy bodies. Most cases of PD are sporadic, but about 10% are familial, among them those caused by mutations in SNCA gene have an autosomal dominant transmission. SNCA encodes α-syn, a small 140-amino acids protein that, under physiological conditions, is mainly localized at the presynaptic terminals. It is prevalently cytosolic, but its presence has been reported in the nucleus, in the mitochondria and, more recently, in the mitochondria-associated ER membranes (MAMs). Whether different cellular localizations may reflect specific α-syn activities is presently unclear and its action at mitochondrial level is still a matter of debate. Mounting evidence supports a role for α-syn in several mitochondria-derived activities, among which maintenance of mitochondrial morphology and modulation of complex I and ATP synthase activity. α-syn has been proposed to localize at the outer membrane (OMM), in the intermembrane space (IMS), at the inner membrane (IMM) and in the mitochondrial matrix, but a clear and comparative analysis of the sub-mitochondrial localization of WT and mutant α-syn is missing. Furthermore, the reasons for this spread sub-mitochondrial localization under physiological and pathological circumstances remain elusive. In this context, we decided to selectively monitor the sub-mitochondrial distribution of the WT and PD-related α-syn mutants A53T and A30P by taking advantage from a bimolecular fluorescence complementation (BiFC) approach. We also investigated whether cell stress could trigger α-syn translocation within the different mitochondrial sub-compartments and whether PD-related mutations could impinge on it. Interestingly, the artificial targeting of α-syn WT (but not of the mutants) to the mitochondrial matrix impacts on ATP production, suggesting a potential role within this compartment.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Mitocôndrias/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/genética , Citosol/metabolismo , Citosol/patologia , Dopamina/genética , Dopamina/metabolismo , Neurônios Dopaminérgicos/patologia , Expressão Gênica/genética , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Proteínas Mutantes/genética , Doença de Parkinson/patologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Terminações Pré-Sinápticas/metabolismo
5.
Cell Rep ; 28(8): 1949-1960.e6, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31433973

RESUMO

Wnt signaling affects fundamental development pathways and, if aberrantly activated, promotes the development of cancers. Wnt signaling is modulated by different factors, but whether the mitochondrial energetic state affects Wnt signaling is unknown. Here, we show that sublethal concentrations of different compounds that decrease mitochondrial ATP production specifically downregulate Wnt/ß-catenin signaling in vitro in colon cancer cells and in vivo in zebrafish reporter lines. Accordingly, fibroblasts from a GRACILE syndrome patient and a generated zebrafish model lead to reduced Wnt signaling. We identify a mitochondria-Wnt signaling axis whereby a decrease in mitochondrial ATP reduces calcium uptake into the endoplasmic reticulum (ER), leading to endoplasmic reticulum stress and to impaired Wnt signaling. In turn, the recovery of the ATP level or the inhibition of endoplasmic reticulum stress restores Wnt activity. These findings reveal a mechanism that links mitochondrial energetic metabolism to the control of the Wnt pathway that may be beneficial against several pathologies.


Assuntos
Trifosfato de Adenosina/biossíntese , Regulação para Baixo , Estresse do Retículo Endoplasmático , Mitocôndrias/metabolismo , Via de Sinalização Wnt , Animais , Linhagem Celular , Fibroblastos/metabolismo , Humanos , Peixe-Zebra
6.
Neurobiol Dis ; 115: 157-166, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29655659

RESUMO

The fine regulation of intracellular calcium is fundamental for all eukaryotic cells. In neurons, Ca2+ oscillations govern the synaptic development, the release of neurotransmitters and the expression of several genes. Alterations of Ca2+ homeostasis were found to play a pivotal role in neurodegenerative progression. The maintenance of proper Ca2+ signaling in neurons demands the continuous activity of Ca2+ pumps and exchangers to guarantee physiological cytosolic concentration of the cation. The plasma membrane Ca2+ATPases (PMCA pumps) play a key role in the regulation of Ca2+ handling in selected sub-plasma membrane microdomains. Among the four basic PMCA pump isoforms existing in mammals, isoforms 2 and 3 are particularly enriched in the nervous system. In humans, genetic mutations in the PMCA2 gene in association with cadherin 23 mutations have been linked to hearing loss phenotypes, while those occurring in the PMCA3 gene were associated with X-linked congenital cerebellar ataxias. Here we describe a novel missense mutation (V1143F) in the calmodulin binding domain (CaM-BD) of the PMCA2 protein. The mutant pump was present in a patient showing congenital cerebellar ataxia but no overt signs of deafness, in line with the absence of mutations in the cadherin 23 gene. Biochemical and molecular dynamics studies on the mutated PMCA2 have revealed that the V1143F substitution alters the binding of calmodulin to the CaM-BD leading to impaired Ca2+ ejection.


Assuntos
Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/genética , Mutação/genética , Neurônios/patologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Adulto , Sinalização do Cálcio/fisiologia , Calmodulina/metabolismo , Ataxia Cerebelar/metabolismo , Humanos , Masculino , Neurônios/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Ligação Proteica/fisiologia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína
7.
Neurosci Lett ; 663: 2-11, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29155350

RESUMO

Ca2+ signals regulate most aspects of animal cell life. They are of particular importance to the nervous system, in which they regulate specific functions, from neuronal development to synaptic plasticity. The homeostasis of cell Ca2+ must thus be very precisely regulated: in all cells Ca2+ pumps transport it from the cytosol to the extracellular medium (the Plasma Membrane Ca2+ ATPases, hereafter referred to as PMCA pumps) or to the lumen of intracellular organelles (the Sarco/Endoplasmatic Reticulum Ca2+ ATPase and the Secretory Pathway Ca2+ ATPase, hereafter referred to as SERCA and SPCA pumps, respectively). In neurons and other excitable cells a powerful plasma membrane Na+/Ca2+ exchanger (NCX) also exports Ca2+ from cells. Quantitatively, the PMCA pumps are of minor importance to the bulk regulation of neuronal Ca2+. However, they are important in the regulation of Ca2+ in specific sub-plasma membrane microdomains which contain a number of enzymes that are relevant to neuronal function. The PMCA pumps (of which 4 basic isoforms are expressed in animal cells) are P-type ATPases that are characterized by a long C-terminal cytosolic tail which is the site of interaction with most of the regulatory factors of the pump, the most important being calmodulin. In resting neurons, at low intracellular Ca2+the C-terminal tail of the PMCA interacts with the main body of the protein keeping it in an autoinhibited state. Local Ca2+ increase activates calmodulin that removes the C-terminal tail from the inhibitory sites. Dysregulation of the Ca2+ signals are incompatible with healthy neuronal life. A number of genetic mutations of PMCA pumps are associated with pathological phenotypes, those of the neuron-specific PMCA 2 and PMCA 3 being the best characterized. PMCA 2 mutations are associated with deafness and PMCA 3 mutations are linked to cerebellar ataxias. Biochemical analysis of the mutated pumps overexpressed in model cells have revealed their decreased ability to export Ca2+. The defect in the bulk cytosolic Ca2+ homeostasis is minor, in keeping with the role of the PMCA pumps in the local control of Ca2+ in specialized plasma membrane microdomains.


Assuntos
Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/patologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Animais , Humanos , Mutação/genética , Doenças do Sistema Nervoso/enzimologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Estrutura Secundária de Proteína , Membrana Tectorial/enzimologia , Membrana Tectorial/patologia
9.
Antioxid Redox Signal ; 28(10): 949-972, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28679281

RESUMO

Significance: Ion channels play an important role in the regulation of organelle function within the cell, as proven by increasing evidence pointing to a link between altered function of intracellular ion channels and different pathologies ranging from cancer to neurodegenerative diseases, ischemic damage, and lysosomal storage diseases. Recent Advances: A link between these pathologies and redox state as well as lipid homeostasis and ion channel function is in the focus of current research. Critical Issues: Ion channels are target of modulation by lipids and lipid messengers, although in most cases the mechanistic details have not been clarified yet. Ion channel function importantly impacts production of reactive oxygen species (ROS), especially in the case of mitochondria and lysosomes. ROS, in turn, may modulate the function of intracellular channels triggering thereby a feedback control under physiological conditions. If produced in excess, ROS can be harmful to lipids and may produce oxidized forms of these membrane constituents that ultimately affect ion channel function by triggering a "circulus vitiosus." Future Directions: The present review summarizes our current knowledge about the contribution of intracellular channels to oxidative stress and gives examples of how these channels are modulated by lipids and how this modulation may affect ROS production in ROS-related diseases. Future studies need to address the importance of the regulation of intracellular ion channels and related oxidative stress by lipids in various physiological and pathological contexts. Antioxid. Redox Signal. 28, 949-972.

10.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3303-3312, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28807751

RESUMO

The neuron-restricted isoform 3 of the plasma membrane Ca2+ ATPase plays a major role in the regulation of Ca2+ homeostasis in the brain, where the precise control of Ca2+ signaling is a necessity. Several function-affecting genetic mutations in the PMCA3 pump associated to X-linked congenital cerebellar ataxias have indeed been described. Interestingly, the presence of co-occurring mutations in additional genes suggest their synergistic action in generating the neurological phenotype as digenic modulators of the role of PMCA3 in the pathologies. Here we report a novel PMCA3 mutation (G733R substitution) in the catalytic P-domain of the pump in a patient affected by non-progressive ataxia, muscular hypotonia, dysmetria and nystagmus. Biochemical studies of the pump have revealed impaired ability to control cellular Ca2+ handling both under basal and under stimulated conditions. A combined analysis by homology modeling and molecular dynamics have revealed a role for the mutated residue in maintaining the correct 3D configuration of the local structure of the pump. Mutation analysis in the patient has revealed two additional function-impairing compound heterozygous missense mutations (R123Q and G214S substitution) in phosphomannomutase 2 (PMM2), a protein that catalyzes the isomerization of mannose 6-phosphate to mannose 1-phosphate. These mutations are known to be associated with Type Ia congenital disorder of glycosylation (PMM2-CDG), the most common group of disorders of N-glycosylation. The findings highlight the association of PMCA3 mutations to cerebellar ataxia and strengthen the possibility that PMCAs act as digenic modulators in Ca2+-linked pathologies.


Assuntos
Ataxia/genética , Ataxia/metabolismo , Defeitos Congênitos da Glicosilação/metabolismo , Mutação de Sentido Incorreto , Fosfotransferases (Fosfomutases)/deficiência , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cálcio/metabolismo , Pré-Escolar , Defeitos Congênitos da Glicosilação/diagnóstico por imagem , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/patologia , Glicosilação , Células HeLa , Humanos , Masculino , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
11.
Biochem Biophys Res Commun ; 483(4): 1116-1124, 2017 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-27480928

RESUMO

The plasma membrane Ca2+ ATPase (PMCA pump) is a member of the superfamily of P-type pumps. It is organized in the plasma membrane with ten transmembrane helices and two main cytosolic loops, one of which contains the catalytic center. It also contains a long C-terminal tail that houses the binding site for calmodulin, the main regulator of the activity of the pump. The pump also contains a number of other regulators, among them acidic phospholipids, kinases, and numerous protein interactors. Separate genes code for 4 basic pump isoforms in mammals, additional isoform complexity being generated by the alternative splicing of primary transcripts. Pumps 1 and 4 are expressed ubiquitously, pumps 2 and 3 are tissue restricted, with preference for the nervous system. In essentially all cells, the pump coexists with much more powerful systems that clear Ca2+ from the cytosol, e.g. the SERCA pump and the Na+/Ca2+ exchanger. Its role in the global regulation of cellular Ca2+ homeostasis is thus quantitatively marginal: its main function is the regulation of Ca2+ signaling in selected sub-plasma membrane microdomains where Ca2+ modulated interactors also reside. Malfunctions of the pump linked to genetic mutations are now described with increasing frequency, the disease phenotypes being especially severe in the nervous system where isoforms 2 and 3 predominate. The analysis of the pump defects suggests that the disease phenotypes are likely to be related to the imperfect modulation of Ca2+ signaling in selected sub-plasma membrane microdomains, leading to the defective control of the activity of important Ca2+ dependent interactors.


Assuntos
Neurônios/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Animais , Sinalização do Cálcio , Humanos , Mutação , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética
12.
Biochim Biophys Acta Mol Basis Dis ; 1863(1): 165-173, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27632770

RESUMO

The plasma membrane Ca2+ ATPases (PMCA pumps) have a long, cytosolic C-terminal regulatory region where a calmodulin-binding domain (CaM-BD) is located. Under basal conditions (low Ca2+), the C-terminal tail of the pump interacts with autoinhibitory sites proximal to the active center of the enzyme. In activating conditions (i.e., high Ca2+), Ca2+-bound CaM displaces the C-terminal tail from the autoinhibitory sites, restoring activity. We have recently identified a G1107D replacement within the CaM-BD of isoform 3 of the PMCA pump in a family affected by X-linked congenital cerebellar ataxia. Here, we investigate the effects of the G1107D replacement on the interplay of the mutated CaM-BD with both CaM and the pump core, by combining computational, biochemical and functional approaches. We provide evidence that the affinity of the isolated mutated CaM-BD for CaM is significantly reduced with respect to the wild type (wt) counterpart, and that the ability of CaM to activate the pump in vitro is thus decreased. Multiscale simulations support the conclusions on the detrimental effect of the mutation, indicating reduced stability of the CaM binding. We further show that the G1107D replacement impairs the autoinhibition mechanism of the PMCA3 pump as well, as the introduction of a negative charge perturbs the contacts between the CaM-BD and the pump core. Thus, the mutation affects both the ability of the pump to optimally transport Ca2+ in the activated state, and the autoinhibition mechanism in its resting state.


Assuntos
Ataxia/genética , Calmodulina/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Mutação Puntual , Ataxia/metabolismo , Sinalização do Cálcio , Humanos , Modelos Moleculares , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
13.
Dis Model Mech ; 9(5): 553-62, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27013529

RESUMO

The shaker rat is an X-linked recessive spontaneous model of progressive Purkinje cell (PC) degeneration exhibiting a shaking ataxia and wide stance. Generation of Wistar Furth (WF)/Brown Norwegian (BN) F1 hybrids and genetic mapping of F2 sib-sib offspring using polymorphic markers narrowed the candidate gene region to 26 Mbp denoted by the last recombinant genetic marker DXRat21 at 133 Mbp to qter (the end of the long arm). In the WF background, the shaker mutation has complete penetrance, results in a stereotypic phenotype and there is a narrow window for age of disease onset; by contrast, the F2 hybrid phenotype was more varied, with a later age of onset and likely non-penetrance of the mutation. By deep RNA-sequencing, five variants were found in the candidate region; four were novel without known annotation. One of the variants caused an arginine (R) to cysteine (C) change at codon 35 of the ATPase, Ca(2+) transporting, plasma membrane 3 (Atp2b3) gene encoding PMCA3 that has high expression in the cerebellum. The variant was well supported by hundreds of overlapping reads, and was found in 100% of all affected replicas and 0% of the wild-type (WT) replicas. The mutation segregated with disease in all affected animals and the amino acid change was found in an evolutionarily conserved region of PMCA3. Despite strong genetic evidence for pathogenicity, in vitro analyses of PMCA3(R35C) function did not show any differences to WT PMCA3. Because Atp2b3 mutation leads to congenital ataxia in humans, the identified Atp2b3 missense change in the shaker rat presents a good candidate for the shaker rat phenotype based on genetic criteria, but cannot yet be considered a definite pathogenic variant owing to lack of functional changes.


Assuntos
Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Mutação/genética , Tremor/genética , Tremor/patologia , Animais , Comportamento Animal , Cálcio/metabolismo , Mapeamento Cromossômico , Modelos Animais de Doenças , Feminino , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Teste de Complementação Genética , Humanos , Masculino , Proteínas Mutantes/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Células de Purkinje/patologia , Ratos Endogâmicos WF , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de RNA , Expansão das Repetições de Trinucleotídeos/genética
14.
J Biol Chem ; 290(26): 16132-41, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25953895

RESUMO

The particular importance of Ca(2+) signaling to neurons demands its precise regulation within their cytoplasm. Isoform 3 of the plasma membrane Ca(2+) ATPase (the PMCA3 pump), which is highly expressed in brain and cerebellum, plays an important role in the regulation of neuronal Ca(2+). A genetic defect of the PMCA3 pump has been described in one family with X-linked congenital cerebellar ataxia. Here we describe a novel mutation in the ATP2B3 gene in a patient with global developmental delay, generalized hypotonia and cerebellar ataxia. The mutation (a R482H replacement) impairs the Ca(2+) ejection function of the pump. It reduces the ability of the pump expressed in model cells to control Ca(2+) transients generated by cell stimulation and impairs its Ca(2+) extrusion function under conditions of low resting cytosolic Ca(2+) as well. In silico analysis of the structural effect of the mutation suggests a reduced stabilization of the portion of the pump surrounding the mutated residue in the Ca(2+)-bound state. The patient also carries two missense mutations in LAMA1, encoding laminin subunit 1α. On the basis of the family pedigree of the patient, the presence of both PMCA3 and laminin subunit 1α mutations appears to be necessary for the development of the disease. Considering the observed defect in cellular Ca(2+) homeostasis and the previous finding that PMCAs act as digenic modulators in Ca(2+)-linked pathologies, the PMCA3 dysfunction along with LAMA1 mutations could act synergistically to cause the neurological phenotype.


Assuntos
Cálcio/metabolismo , Ataxia Cerebelar/metabolismo , Laminina/metabolismo , Mutação de Sentido Incorreto , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Adulto , Sequência de Aminoácidos , Ataxia Cerebelar/genética , Criança , Feminino , Homeostase , Humanos , Laminina/química , Laminina/genética , Masculino , Dados de Sequência Molecular , Linhagem , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Alinhamento de Sequência
15.
Hum Mol Genet ; 24(4): 1045-60, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25305074

RESUMO

The Parkinson's disease-related protein DJ-1 has a role in the protection against oxidative stress and maintenance of mitochondria structure. Whether this action depends on its localization and activity within the mitochondria is not clear. Here we develop an approach to resolve intra-mitochondrial distribution of DJ-1 and monitor its translocation under specific conditions. By a new split-green fluorescent protein (GFP)-based tool, we can observe that a small DJ-1 fraction is located within the mitochondrial matrix and that it consistently increases upon nutrient depletion. We also find that the targeting of DJ-1 to the mitochondrial matrix enhances mitochondrial and cytosolic adenosine triphosphate levels. Intriguingly, DJ-1 pathogenic mutants fail to improve bioenergetics and translocate within the mitochondrial matrix, suggesting that the DJ-1 protective role requires both these actions. By this new split-GFP-based tool, we can resolve mitochondrial compartmentalization of proteins which are not constitutively resident in mitochondria but translocate to them in response to specific stimuli.


Assuntos
Trifosfato de Adenosina/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Proteínas Oncogênicas/metabolismo , Autofagia/genética , Linhagem Celular , Citoplasma/metabolismo , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mitocôndrias/genética , Modelos Moleculares , Mutação , Proteínas Oncogênicas/química , Proteínas Oncogênicas/genética , Conformação Proteica , Proteína Desglicase DJ-1 , Transporte Proteico
16.
J Biol Chem ; 289(48): 33073-82, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25288803

RESUMO

A missense mutation in ATP2A1 gene, encoding sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA1) protein, causes Chianina cattle congenital pseudomyotonia, an exercise-induced impairment of muscle relaxation. Skeletal muscles of affected cattle are characterized by a selective reduction of SERCA1 in sarcoplasmic reticulum membranes. In this study, we provide evidence that the ubiquitin proteasome system is involved in the reduced density of mutated SERCA1. The treatment with MG132, an inhibitor of ubiquitin proteasome system, rescues the expression level and membrane localization of the SERCA1 mutant in a heterologous cellular model. Cells co-transfected with the Ca(2+)-sensitive probe aequorin show that the rescued SERCA1 mutant exhibits the same ability of wild type to maintain Ca(2+) homeostasis within cells. These data have been confirmed by those obtained ex vivo on adult skeletal muscle fibers from a biopsy from a pseudomyotonia-affected subject. Our data show that the mutation generates a protein most likely corrupted in proper folding but not in catalytic activity. Rescue of mutated SERCA1 to sarcoplasmic reticulum membrane can re-establish resting cytosolic Ca(2+) concentration and prevent the appearance of pathological signs of cattle pseudomyotonia.


Assuntos
Doenças dos Bovinos/enzimologia , Síndrome de Isaacs/enzimologia , Síndrome de Isaacs/veterinária , Proteínas Musculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/enzimologia , Ubiquitina/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/patologia , Cricetinae , Células HEK293 , Humanos , Síndrome de Isaacs/genética , Síndrome de Isaacs/patologia , Leupeptinas/farmacologia , Proteínas Musculares/genética , Mutação , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteassoma/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Ubiquitina/genética
17.
Methods Enzymol ; 543: 21-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24924126

RESUMO

The photoprotein aequorin generates blue light upon binding of Ca(2+) ions. Together with its very low Ca(2+)-buffering capacity and the possibility to add specific targeting sequences, this property has rendered aequorin particularly suitable to monitor Ca(2+) concentrations in specific subcellular compartments. Recently, a new generation of genetically encoded Ca(2+) probes has been developed by fusing Ca(2+)-responsive elements with the green fluorescent protein (GFP). Aequorin has also been employed to this aim, resulting in an aequorin-GFP chimera with the Ca(2+) sensitivity of aequorin and the fluorescent properties of GFP. This setup has actually solved the major limitation of aequorin, for example, its poor ability to emit light, which rendered it inappropriate for the monitoring of Ca(2+) waves at the single-cell level by imaging. In spite of the numerous genetically encoded Ca(2+) indicators that are currently available, aequorin-based probes remain the method of election when an accurate quantification of Ca(2+) levels is required. Here, we describe currently available aequorin variants and their use for monitoring Ca(2+) waves in specific subcellular compartments. Among various applications, this method is relevant for the study of the alterations of Ca(2+) homeostasis that accompany oncogenesis, tumor progression, and response to therapy.


Assuntos
Equorina/metabolismo , Cálcio/metabolismo , Sondas Moleculares , Organelas/metabolismo , Animais , Humanos , Transporte de Íons , Camundongos , Camundongos Transgênicos
18.
Cell Tissue Res ; 357(2): 439-54, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24781149

RESUMO

Calcium (Ca(2+)) is an almost universal second messenger that regulates important activities of all eukaryotic cells. It is of critical importance to neurons, which have developed extensive and intricate pathways to couple the Ca(2+) signal to their biochemical machinery. In particular, Ca(2+) participates in the transmission of the depolarizing signal and contributes to synaptic activity. During aging and in neurodegenerative disease processes, the ability of neurons to maintain an adequate energy level can be compromised, thus impacting on Ca(2+) homeostasis. In Parkinson's disease (PD), many signs of neurodegeneration result from compromised mitochondrial function attributable to specific effects of toxins on the mitochondrial respiratory chain and/or to genetic mutations. Despite these effects being present in almost all cell types, a distinguishing feature of PD is the extreme selectivity of cell loss, which is restricted to the dopaminergic neurons in the ventral portion of the substantia nigra pars compacta. Many hypotheses have been proposed to explain such selectivity, but only recently it has been convincingly shown that the innate autonomous activity of these neurons, which is sustained by their specific Cav1.3 L-type channel pore-forming subunit, is responsible for the generation of basal metabolic stress that, under physiological conditions, is compensated by mitochondrial buffering. However, when mitochondria function becomes even partially compromised (because of aging, exposure to environmental factors or genetic mutations), the metabolic stress overwhelms the protective mechanisms, and the process of neurodegeneration is engaged. The characteristics of Ca(2+) handling in neurons of the substantia nigra pars compacta and the possible involvement of PD-related proteins in the control of Ca(2+) homeostasis will be discussed in this review.


Assuntos
Encéfalo/patologia , Sinalização do Cálcio , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Animais , Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Oncogênicas/metabolismo , Proteína Desglicase DJ-1 , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , alfa-Sinucleína/metabolismo
19.
FEBS J ; 280(21): 5385-97, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23413890

RESUMO

The Ca(2+) ATPases of the plasma membrane (PMCA pumps) export Ca(2+) from all eukaryotic cells. In mammals they are the products of four separate genes. PMCA types 1 and 4 are distributed ubiquitously; PMCA types 2 and 3 are restricted to some tissues, the most important being the nervous system. Alternative splicing at two sites greatly increases the number of pump isoforms. The two ubiquitous isoforms are no longer considered as only housekeeping pumps as they also perform tissue-specific functions. The PMCAs are classical P-type pumps, their reaction cycle repeating that of all other pumps of the family. Their 3D structure has not been solved, but molecular modeling on SERCA pump templates shows the essential structural pattern of the latter. PMCAs are regulated by calmodulin, which interacts with high affinity with their cytosolic C-terminal tail. A second calmodulin-binding domain with lower affinity is present in some splicing variants of the pump. The PMCAs are essential to the regulation of cellular Ca(2+), but the all-important Ca(2+) signal is ambivalent: defects in its control generate various pathologies, the most thoroughly studied being those of genetic origin. Genetic defects of PMCA function produce disease phenotypes: the best characterized is a form of deafness in mice and in humans linked to PMCA2 mutations. A cerebellar X-linked human ataxia has recently been found to be caused by a mutation in the calmodulin-binding domain of PMCA3.


Assuntos
Membrana Celular/enzimologia , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Animais , Humanos , Camundongos , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo
20.
Hum Mol Genet ; 22(11): 2152-68, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23418303

RESUMO

DJ-1 was first identified as an oncogene. More recently, mutations in its gene have been found causative for autosomal recessive familial Parkinson disease. Numerous studies support the DJ-1 role in the protection against oxidative stress and maintenance of mitochondria structure; however, the mechanism of its protective function remains largely unknown. We investigated whether mitochondrial Ca(2+) homeostasis, a key parameter in cell physiology, could be a target for DJ-1 action. Here, we show that DJ-1 modulates mitochondrial Ca(2+) transients induced upon cell stimulation with an 1,4,5-inositol-tris-phosphate agonist by favouring the endoplasmic reticulum (ER)-mitochondria tethering. A reduction of DJ-1 levels results in mitochondria fragmentation and decreased mitochondrial Ca(2+) uptake in stimulated cells. To functionally couple these effects with the well-recognized cytoprotective role of DJ-1, we investigated its action in respect to the tumour suppressor p53. p53 overexpression in HeLa cells impairs their ability to accumulate Ca(2+) in the mitochondrial matrix, causes alteration of the mitochondrial morphology and reduces ER-mitochondria contact sites. Mitochondrial impairments are independent from Drp1 activation, since the co-expression of the dominant negative mutant of Drp1 failed to abolish them. DJ-1 overexpression prevents these alterations by re-establishing the ER-mitochondria tethering. Similarly, the co-expression of the pro-fusion protein Mitofusin 2 blocks the effects induced by p53 on mitochondria, confirming that the modulation of the ER-mitochondria contact sites is critical to mitochondria integrity. Thus, the impairment of ER-mitochondria communication, as a consequence of DJ-1 loss-of-function, may be detrimental for mitochondria-related processes and be at the basis of mitochondrial dysfunction observed in Parkinson disease.


Assuntos
Retículo Endoplasmático/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mitocôndrias/metabolismo , Proteínas Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Transporte Biológico , Encéfalo/metabolismo , Cálcio/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Expressão Gênica , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Proteínas Oncogênicas/genética , Fenótipo , Proteína Desglicase DJ-1 , Proteólise , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Frações Subcelulares/metabolismo , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA