Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Childs Nerv Syst ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862795

RESUMO

PURPOSE: The aim of this study was to evaluate the diagnostic value and accuracy of navigated intraoperative ultrasound (iUS) in pediatric oncological neurosurgery as compared to intraoperative magnetic resonance imaging (iMRI). METHODS: A total of 24 pediatric patients undergoing tumor debulking surgery with iUS, iMRI, and neuronavigation were included in this study. Prospective acquisition of iUS images was done at two time points during the surgical procedure: (1) before resection for tumor visualization and (2) after resection for residual tumor assessment. Dice similarity coefficients (DSC), Hausdorff distances 95th percentiles (HD95) and volume differences, sensitivity, and specificity were calculated for iUS segmentations as compared to iMRI. RESULTS: A high correlation (R = 0.99) was found for volume estimation as measured on iUS and iMRI before resection. A good spatial accuracy was demonstrated with a median DSC of 0.72 (IQR 0.14) and a median HD95 percentile of 4.98 mm (IQR 2.22 mm). The assessment after resection demonstrated a sensitivity of 100% and a specificity of 84.6% for residual tumor detection with navigated iUS. A moderate accuracy was observed with a median DSC of 0.58 (IQR 0.27) and a median HD95 of 5.84 mm (IQR 4.04 mm) for residual tumor volumes. CONCLUSION: We found that iUS measurements of tumor volume before resection correlate well with those obtained from preoperative MRI. The accuracy of residual tumor detection was reliable as compared to iMRI, indicating the suitability of iUS for directing the surgeon's attention to areas suspect for residual tumor. Therefore, iUS is considered as a valuable addition to the neurosurgical armamentarium. TRIAL REGISTRATION NUMBER AND DATE: PMCLAB2023.476, February 12th 2024.

2.
Med Phys ; 51(2): 826-838, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141047

RESUMO

BACKGROUND: Needle-based procedures, such as fine needle aspiration and thermal ablation, are often applied for thyroid nodule diagnosis and therapeutic purposes, respectively. With blood vessels and nerves nearby, these procedures can pose risks in damaging surrounding critical structures. PURPOSE: The development and validation of innovative strategies to manage these risks require a test object with well-characterized physical properties. For this work, we focus on the application of ultrasound-guided thermal radiofrequency ablation. METHODS: We have developed a single-use anthropomorphic phantom mimicking the thyroid and surrounding anatomical and physiological structures that are relevant to ultrasound-guided thermal ablation. The phantom was composed of a mixture of polyacrylamide, water, and egg white extract and was cast using molds in multiple steps. The thermal, acoustical, and electrical characteristics were experimentally validated. The ablation zones were analyzed via non-destructive T2 -weighted magnetic resonance imaging scans utilizing the relaxometry changes of coagulated egg albumen, and the temperature distribution was monitored using an array of fiber Bragg grating sensors. RESULTS: The physical properties of the phantom were verified both on ultrasound as well as in terms of the phantom response to thermal ablation. The final temperature achieved (92°C), the median percentage of the nodule ablated (82.1%), the median volume ablated outside the nodule (0.8 mL), and the median number of critical structures affected (0) were quantified. CONCLUSION: An anthropomorphic phantom that can provide a realistic model for development and training in ultrasound-guided needle-based thermal interventions for thyroid nodules has been presented.


Assuntos
Ablação por Cateter , Nódulo da Glândula Tireoide , Humanos , Nódulo da Glândula Tireoide/diagnóstico por imagem , Nódulo da Glândula Tireoide/cirurgia , Imagens de Fantasmas , Ablação por Cateter/métodos , Ultrassonografia de Intervenção , Resultado do Tratamento
4.
Cancers (Basel) ; 15(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38001712

RESUMO

Adequate detection of the histopathological extraprostatic extension (EPE) of prostate cancer (PCa) remains a challenge using conventional radiomics on 3 Tesla multiparametric magnetic resonance imaging (3T mpMRI). This study focuses on the assessment of artificial intelligence (AI)-driven models with innovative MRI radiomics in predicting EPE of prostate cancer (PCa) at a lesion-specific level. With a dataset encompassing 994 lesions from 794 PCa patients who underwent robot-assisted radical prostatectomy (RARP) at two Dutch hospitals, the study establishes and validates three classification models. The models were validated on an internal validation cohort of 162 lesions and an external validation cohort of 189 lesions in terms of discrimination, calibration, net benefit, and comparison to radiology reporting. Notably, the achieved AUCs ranged from 0.86 to 0.91 at the lesion-specific level, demonstrating the superior accuracy of the random forest model over conventional radiological reporting. At the external test cohort, the random forest model was the best-calibrated model and demonstrated a significantly higher accuracy compared to radiological reporting (83% vs. 67%, p = 0.02). In conclusion, an AI-powered model that includes both existing and novel MRI radiomics improves the detection of lesion-specific EPE in prostate cancer.

5.
Phys Imaging Radiat Oncol ; 26: 100453, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37312973

RESUMO

Background and purpose: Manual contouring of neurovascular structures on prostate magnetic resonance imaging (MRI) is labor-intensive and prone to considerable interrater disagreement. Our aim is to contour neurovascular structures automatically on prostate MRI by deep learning (DL) to improve workflow and interrater agreement. Materials and methods: Segmentation of neurovascular structures was performed on pre-treatment 3.0 T MRI data of 131 prostate cancer patients (training [n = 105] and testing [n = 26]). The neurovascular structures include the penile bulb (PB), corpora cavernosa (CCs), internal pudendal arteries (IPAs), and neurovascular bundles (NVBs). Two DL networks, nnU-Net and DeepMedic, were trained for auto-contouring on prostate MRI and evaluated using volumetric Dice similarity coefficient (DSC), mean surface distances (MSD), Hausdorff distances, and surface DSC. Three radiation oncologists evaluated the DL-generated contours and performed corrections when necessary. Interrater agreement was assessed and the time required for manual correction was recorded. Results: nnU-Net achieved a median DSC of 0.92 (IQR: 0.90-0.93) for the PB, 0.90 (IQR: 0.86-0.92) for the CCs, 0.79 (IQR: 0.77-0.83) for the IPAs, and 0.77 (IQR: 0.72-0.81) for the NVBs, which outperformed DeepMedic for each structure (p < 0.03). nnU-Net showed a median MSD of 0.24 mm for the IPAs and 0.71 mm for the NVBs. The median interrater DSC ranged from 0.93 to 1.00, with the majority of cases (68.9%) requiring manual correction times under two minutes. Conclusions: DL enables reliable auto-contouring of neurovascular structures on pre-treatment MRI data, easing the clinical workflow in neurovascular-sparing MR-guided radiotherapy.

6.
Med Phys ; 49(5): 3093-3106, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35178781

RESUMO

BACKGROUND: Accuracy and precision assessment in radiomic features is important for the determination of their potential to characterize cancer lesions. In this regard, simulation of different imaging conditions using specialized phantoms is increasingly being investigated. In this study, the design and evaluation of a modular multimodality imaging phantom to simulate heterogeneous uptake and enhancement patterns for radiomics quantification in hybrid imaging is presented. METHODS: A modular multimodality imaging phantom was constructed that could simulate different patterns of heterogeneous uptake and enhancement patterns in positron emission tomography (PET), single-photon emission computed tomography (SPECT), computed tomography (CT), and magnetic resonance (MR) imaging. The phantom was designed to be used as an insert in the standard NEMA-NU2 IEC body phantom casing. The entire phantom insert is composed of three segments, each containing three separately fillable compartments. The fillable compartments between segments had different sizes in order to simulate heterogeneous patterns at different spatial scales. The compartments were separately filled with different ratios of 99m Tc-pertechnetate, 18 F-fluorodeoxyglucose ([18 F]FDG), iodine- and gadolinium-based contrast agents for SPECT, PET, CT, and T1 -weighted MR imaging respectively. Image acquisition was performed using standard oncological protocols on all modalities and repeated five times for repeatability assessment. A total of 93 radiomic features were calculated. Variability was assessed by determining the coefficient of quartile variation (CQV) of the features. Comparison of feature repeatability at different modalities and spatial scales was performed using Kruskal-Wallis-, Mann-Whitney U-, one-way ANOVA- and independent t-tests. RESULTS: Heterogeneous uptake and enhancement could be simulated on all four imaging modalities. Radiomic features in SPECT were significantly less stable than in all other modalities. Features in PET were significantly less stable than in MR and CT. A total of 20 features, particularly in the gray-level co-occurrence matrix (GLCM) and gray-level run-length matrix (GLRLM) class, were found to be relatively stable in all four modalities for all three spatial scales of heterogeneous patterns (with CQV < 10%). CONCLUSION: The phantom was suitable for simulating heterogeneous uptake and enhancement patterns in [18 F]FDG-PET, 99m Tc-SPECT, CT, and T1 -weighted MR images. The results of this work indicate that the phantom might be useful for the further development and optimization of imaging protocols for radiomic quantification in hybrid imaging modalities.


Assuntos
Fluordesoxiglucose F18 , Processamento de Imagem Assistida por Computador , Estudos de Viabilidade , Processamento de Imagem Assistida por Computador/métodos , Imagem Multimodal , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA