Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 14(12)2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36548743

RESUMO

The venoms of ants (Formicidae) are a promising source of novel bioactive molecules with potential for clinical and agricultural applications. However, despite the rich diversity of ant species, only a fraction of this vast resource has been thoroughly examined in bioprospecting programs. Previous studies focusing on the venom of Central European ants (subfamily Myrmicinae) identified a number of short linear decapeptides and nonapeptides resembling antimicrobial peptides (AMPs). Here, we describe the in silico approach and bioactivity profiling of 10 novel AMP-like peptides from the fellow Central European myrmicine ants Myrmica rubra and Myrmica ruginodis. Using the sequences of known ant venom peptides as queries, we screened the venom gland transcriptomes of both species. We found transcripts of nine novel decapeptides and one novel nonapeptide. The corresponding peptides were synthesized for bioactivity profiling in a broad panel of assays consisting of tests for cytotoxicity as well as antiviral, insecticidal, and antimicrobial activity. U-MYRTX-Mrug5a showed moderately potent antimicrobial effects against several bacteria, including clinically relevant pathogens such as Listeria monocytogenes and Staphylococcus epidermidis, but high concentrations showed negligible cytotoxicity. U-MYRTX-Mrug5a is, therefore, a probable lead for the development of novel peptide-based antibiotics.


Assuntos
Venenos de Formiga , Anti-Infecciosos , Formigas , Animais , Formigas/genética , Peptídeos/química , Transcriptoma , Peçonhas , Venenos de Formiga/toxicidade , Venenos de Formiga/química
2.
Toxins (Basel) ; 14(5)2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35622604

RESUMO

Animal venoms are a rich source of novel biomolecules with potential applications in medicine and agriculture. Ants are one of the most species-rich lineages of venomous animals. However, only a fraction of their biodiversity has been studied so far. Here, we investigated the venom components of two myrmicine (subfamily Myrmicinae) ants: Myrmica rubra and Myrmica ruginodis. We applied a venomics workflow based on proteotranscriptomics and found that the venoms of both species are composed of several protein classes, including venom serine proteases, cysteine-rich secretory protein, antigen 5 and pathogenesis-related 1 (CAP) superfamily proteins, Kunitz-type serine protease inhibitors and venom acid phosphatases. Several of these protein classes are known venom allergens, and for the first time we detected phospholipase A1 in the venom of M. ruginodis. We also identified two novel epidermal growth factor (EGF) family toxins in the M. ruginodis venom proteome and an array of additional EGF-like toxins in the venom gland transcriptomes of both species. These are similar to known toxins from the related myrmicine ant, Manica rubida, and the myrmecine (subfamily Myrmeciinae) Australian red bulldog ant Myrmecia gullosa, and are possibly deployed as weapons in defensive scenarios or to subdue prey. Our work suggests that M.rubra and M. ruginodis venoms contain many enzymes and other high-molecular-weight proteins that cause cell damage. Nevertheless, the presence of EGF-like toxins suggests that myrmicine ants have also recruited smaller peptide components into their venom arsenal. Although little is known about the bioactivity and function of EGF-like toxins, their presence in myrmicine and myrmecine ants suggests they play a key role in the venom systems of the superfamily Formicoidea. Our work adds to the emerging picture of ant venoms as a source of novel bioactive molecules and highlights the need to incorporate such taxa in future venom bioprospecting programs.


Assuntos
Venenos de Formiga , Formigas , Animais , Austrália , Biodiversidade , Fator de Crescimento Epidérmico
3.
Genes (Basel) ; 12(8)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440287

RESUMO

The clothes moth Tineola bisselliella is one of a few insects that can digest keratin, leading to the destruction of clothing, textiles and artwork. The mechanism of keratin digestion is not yet fully understood, partly reflecting the lack of publicly available genomic and transcriptomic data. Here we present a high-quality gut transcriptome of T. bisselliella generated from larvae reared on keratin-rich and keratin-free diets. The overall transcriptome consists of 428,221 contigs that were functionally annotated and screened for candidate enzymes involved in keratin utilization. As a mechanism for keratin digestion, we identified cysteine synthases, cystathionine ß-synthases and cystathionine γ-lyases. These enzymes release hydrogen sulfite, which may reduce the disulfide bonds in keratin. The dataset also included 27 differentially expressed contigs with trypsin domains, among which 20 were associated with keratin feeding. Finally, we identified seven collagenases that were upregulated on the keratin-rich diet. In addition to this enzymatic repertoire potentially involved in breaking down keratin, our analysis of poly(A)-enriched and poly(A)-depleted transcripts suggested that T. bisselliella larvae possess an unstable intestinal microbiome that may nevertheless contribute to keratin digestion.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Queratinas/metabolismo , Larva/genética , Lepidópteros/genética , Transcriptoma , Animais , Ontologia Genética , Lepidópteros/crescimento & desenvolvimento
4.
Biotechnol Bioeng ; 109(6): 1386-94, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22389098

RESUMO

Recently released sequence information on Chinese hamster ovary (CHO) cells promises to not only facilitate our understanding of these industrially important cell factories through direct analysis of the sequence, but also to enhance existing methodologies and allow new tools to be developed. In this article we demonstrate the utilization of CHO specific sequence information to improve mass spectrometry (MS) based proteomic identification. The use of various CHO specific databases enabled the identification of 282 additional proteins, thus increasing the total number of identified proteins by 40-50%, depending on the sample source and methods used. In addition, a considerable portion of those proteins that were identified previously based on inter-species sequence homology were now identified by a larger number of peptides matched, thus increasing the confidence of identification. The new sequence information offers improved interpretation of proteomic analyses and will, in the years to come, prove vital to unraveling the CHO proteome.


Assuntos
Biologia Computacional , Células Epiteliais/química , Espectrometria de Massas/métodos , Proteômica , Animais , Células CHO , Cricetinae , Cricetulus
5.
J Biotechnol ; 136(1-2): 11-21, 2008 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-18367281

RESUMO

Corynebacterium urealyticum is a lipid-requiring, urealytic bacterium of the human skin flora that has been recognized as causative agent of urinary tract infections. We report the analysis of the complete genome sequence of C. urealyticum DSM7109, which was initially recovered from a patient with alkaline-encrusted cystitis. The genome sequence was determined by a combination of pyrosequencing and Sanger technology. The chromosome of C. urealyticum DSM7109 has a size of 2,369,219bp and contains 2024 predicted coding sequences, of which 78% were considered as orthologous with genes in the Corynebacterium jeikeium K411 genome. Metabolic analysis of the lipid-requiring phenotype revealed the absence of a fatty acid synthase gene and the presence of a beta-oxidation pathway along with a large repertoire of auxillary genes for the degradation of exogenous fatty acids. A urease locus with the gene order ureABCEFGD may play a pivotal role in virulence of C. urealyticum by the alkalinization of human urine and the formation of struvite stones. Multidrug resistance of C. urealyticum DSM7109 is mediated by transposable elements, conferring resistances to macrolides, lincosamides, ketolides, aminoglycosides, chloramphenicol, and tetracycline. The complete genome sequence of C. urealyticum revealed a detailed picture of the lifestyle of this opportunistic human pathogen.


Assuntos
Proteínas de Bactérias/genética , Mapeamento Cromossômico/métodos , Corynebacterium/genética , Genoma Bacteriano/genética , Fases de Leitura Aberta/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA