Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolism ; 157: 155932, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38729600

RESUMO

BACKGROUND: Obesity-induced hypogonadism (OIH) is a prevalent, but often neglected condition in men, which aggravates the metabolic complications of overweight. While hypothalamic suppression of Kiss1-encoded kisspeptin has been suggested to contribute to OIH, the molecular mechanisms for such repression in obesity, and the therapeutic implications thereof, remain unknown. METHODS: A combination of bioinformatic, expression and functional analyses was implemented, assessing the role of the evolutionary-conserved miRNAs, miR-137 and miR-325, in mediating obesity-induced suppression of hypothalamic kisspeptin, as putative mechanism of central hypogonadism and metabolic comorbidities. The implications of such miR-137/325-kisspeptin interplay for therapeutic intervention in obesity were also explored using preclinical OIH models. RESULTS: MiR-137/325 repressed human KISS1 3'-UTR in-vitro and inhibited hypothalamic kisspeptin content in male rats, while miR-137/325 expression was up-regulated, and Kiss1/kisspeptin decreased, in the medio-basal hypothalamus of obese rats. Selective over-expression of miR-137 in Kiss1 neurons reduced Kiss1/ kisspeptin and partially replicated reproductive and metabolic alterations of OIH in lean mice. Conversely, interference of the repressive actions of miR-137/325 selectively on Kiss1 3'-UTR in vivo, using target-site blockers (TSB), enhanced kisspeptin content and reversed central hypogonadism in obese rats, together with improvement of glucose intolerance, insulin resistance and cardiovascular and inflammatory markers, despite persistent exposure to obesogenic diet. Reversal of OIH by TSB miR-137/325 was more effective than chronic kisspeptin or testosterone treatments in obese rats. CONCLUSIONS: Our data disclose that the miR-137/325-Kisspeptin repressive interaction is a major player in the pathogenesis of obesity-induced hypogonadism and a putative druggable target for improved management of this condition and its metabolic comorbidities in men suffering obesity. SIGNIFICANCE STATEMENT: Up to half of the men suffering obesity display also central hypogonadism, an often neglected complication of overweight that can aggravate the clinical course of obesity and its complications. The mechanisms for such obesity-induced hypogonadism remain poorly defined. We show here that the evolutionary conserved miR137/miR325 tandem centrally mediates obesity-induced hypogonadism via repression of the reproductive-stimulatory signal, kisspeptin; this may represent an amenable druggable target for improved management of hypogonadism and other metabolic complications of obesity.


Assuntos
Hipogonadismo , Hipotálamo , Kisspeptinas , MicroRNAs , Obesidade , MicroRNAs/genética , MicroRNAs/metabolismo , Hipogonadismo/genética , Hipogonadismo/metabolismo , Hipogonadismo/complicações , Kisspeptinas/genética , Kisspeptinas/metabolismo , Animais , Obesidade/metabolismo , Obesidade/complicações , Obesidade/genética , Masculino , Ratos , Hipotálamo/metabolismo , Humanos , Camundongos , Ratos Wistar , Comorbidade
2.
Biomed Pharmacother ; 174: 116564, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608525

RESUMO

During resolution of inflammation, specialized proresolving mediators (SPMs), including resolvins, are produced to restore tissue homeostasis. We hypothesized that there might be a dysregulation of SPMs pathways in pathological vascular remodeling and that resolvin D2 (RvD2) might prevent vascular remodeling and contractile and endothelial dysfunction in a model of obesity and hypertension. In aortic samples of patients with or without abdominal aortic aneurysms (AAA), we evaluated gene expression of enzymes involved in SPMs synthesis (ALOXs), SPMs receptors and pro-inflammatory genes. In an experimental model of aortic dilation induced by high fat diet (HFD, 60%, eighteen weeks) and angiotensin II (AngII) infusion (four weeks), we studied the effect of RvD2 administration in aorta and small mesenteric arteries structure and function and markers of inflammation. In human macrophages we evaluated the effects of AngII and RvD2 in macrophages function and SPMs profile. In patients, we found positive correlations between AAA and obesity, and between AAA and expression of ALOX15, RvD2 receptor GPR18, and pro-inflammatory genes. There was an inverse correlation between the expression of aortic ALOX15 and AAA growth rate. In the mice model, RvD2 partially prevented the HFD plus AngII-induced obesity and adipose tissue inflammation, hypertension, aortic and mesenteric arteries remodeling, hypercontratility and endothelial dysfunction, and the expression of vascular proinflammatory markers and cell apoptosis. In human macrophages, RvD2 prevented AngII-induced impaired efferocytosis and switched SPMs profile. RvD2 might represent a novel protective strategy in preventing vascular damage associated to hypertension and obesity likely through effects in vascular and immune cells.


Assuntos
Ácidos Docosa-Hexaenoicos , Hipertensão , Camundongos Endogâmicos C57BL , Obesidade , Remodelação Vascular , Animais , Masculino , Humanos , Ácidos Docosa-Hexaenoicos/farmacologia , Hipertensão/metabolismo , Hipertensão/tratamento farmacológico , Obesidade/complicações , Obesidade/metabolismo , Remodelação Vascular/efeitos dos fármacos , Camundongos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Dieta Hiperlipídica/efeitos adversos , Angiotensina II , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Camundongos Obesos , Vasoconstrição/efeitos dos fármacos , Inflamação/patologia , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Modelos Animais de Doenças
3.
J Pharmacol Exp Ther ; 388(2): 670-687, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38129126

RESUMO

Inflammatory mechanisms and oxidative stress seem to contribute to the pathogenesis of hypertension. ITH13001 is a melatonin-phenyl-acrylate hybrid that moderately induces the antioxidant transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) and has a potent oxidant scavenging effect compared with other derivatives of its family. Here we investigated the effect of ITH13001 on hypertension and the associated cardiovascular alterations. Angiotensin II (AngII)-infused mice were treated with ITH13001 (1 mg/kg per day, i.p.) for 2 weeks. The ITH13001 treatment prevented: 1) the development of hypertension, cardiac hypertrophy, and increased collagen and B-type natriuretic peptide (Bnp) expression in the heart; 2) the reduction of elasticity, incremental distensibility, fenestrae area, intraluminal diameter, and endothelial cell number in mesenteric resistance arteries (MRA); 3) the endothelial dysfunction in aorta and MRA; 4) the plasma and cardiovascular oxidative stress and the reduced aortic nitric oxide (NO) bioavailability; 5) the increased cardiac levels of the cytokines interleukin (IL)-1ß, IL-6, and C-C motif chemokine ligand 2 (Ccl2), the T cell marker cluster of differentiation 3 (Cd3), the inflammasome NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3), the proinflammatory enzymes inducible nitric oxide synthase (iNOS) and COX-2, the toll-like receptor 4 (TLR4) adapter protein myeloid differentiation primary response 88 (MyD88), and the nuclear factor kappa B (NF-κB) subunit p65; 6) the greater aortic expression of the cytokines tumor necrosis factor alpha (Tnf-α), Ccl2 and IL-6, Cd3, iNOS, MyD88, and NLRP3. Although ITH13001 increased nuclear Nrf2 levels and heme oxygenase 1 (HO-1) expression in vascular smooth muscle cells, both cardiac and vascular Nrf2, Ho-1, and NADPH quinone dehydrogenase 1 (Nqo1) levels remained unmodified irrespective of AngII infusion. Summarizing, ITH13001 improved hypertension-associated cardiovascular alterations independently of Nrf2 pathway activation, likely due to its direct antioxidant and anti-inflammatory properties. Therefore, ITH13001 could be a useful therapeutic strategy in patients with resistant hypertension. SIGNIFICANCE STATEMENT: Despite the existing therapeutic arsenal, only half of the patients treated for hypertension have adequately controlled blood pressure; therefore, the search for new compounds to control this pathology and the associated damage to end-target organs (cerebral, cardiac, vascular, renal) is of particular interest. The present study demonstrates that a new melatonin derivative, ITH13001, prevents hypertension development and the associated cardiovascular alterations due to its antioxidant and anti-inflammatory properties, making this compound a potential candidate for treatment of resistant hypertensive patients.


Assuntos
Hipertensão , Melatonina , Humanos , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Angiotensina II , Melatonina/farmacologia , Melatonina/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/prevenção & controle , NF-kappa B/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia
4.
Circulation ; 143(21): 2091-2109, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33709773

RESUMO

BACKGROUND: Marfan syndrome (MFS) is an autosomal dominant disorder of the connective tissue caused by mutations in the FBN1 (fibrillin-1) gene encoding a large glycoprotein in the extracellular matrix called fibrillin-1. The major complication of this connective disorder is the risk to develop thoracic aortic aneurysm. To date, no effective pharmacologic therapies have been identified for the management of thoracic aortic disease and the only options capable of preventing aneurysm rupture are endovascular repair or open surgery. Here, we have studied the role of mitochondrial dysfunction in the progression of thoracic aortic aneurysm and mitochondrial boosting strategies as a potential treatment to managing aortic aneurysms. METHODS: Combining transcriptomics and metabolic analysis of aortas from an MFS mouse model (Fbn1c1039g/+) and MFS patients, we have identified mitochondrial dysfunction alongside with mtDNA depletion as a new hallmark of aortic aneurysm disease in MFS. To demonstrate the importance of mitochondrial decline in the development of aneurysms, we generated a conditional mouse model with mitochondrial dysfunction specifically in vascular smooth muscle cells (VSMC) by conditional depleting Tfam (mitochondrial transcription factor A; Myh11-CreERT2Tfamflox/flox mice). We used a mouse model of MFS to test for drugs that can revert aortic disease by enhancing Tfam levels and mitochondrial respiration. RESULTS: The main canonical pathways highlighted in the transcriptomic analysis in aortas from Fbn1c1039g/+ mice were those related to metabolic function, such as mitochondrial dysfunction. Mitochondrial complexes, whose transcription depends on Tfam and mitochondrial DNA content, were reduced in aortas from young Fbn1c1039g/+ mice. In vitro experiments in Fbn1-silenced VSMCs presented increased lactate production and decreased oxygen consumption. Similar results were found in MFS patients. VSMCs seeded in matrices produced by Fbn1-deficient VSMCs undergo mitochondrial dysfunction. Conditional Tfam-deficient VSMC mice lose their contractile capacity, showed aortic aneurysms, and died prematurely. Restoring mitochondrial metabolism with the NAD precursor nicotinamide riboside rapidly reverses aortic aneurysm in Fbn1c1039g/+ mice. CONCLUSIONS: Mitochondrial function of VSMCs is controlled by the extracellular matrix and drives the development of aortic aneurysm in Marfan syndrome. Targeting vascular metabolism is a new available therapeutic strategy for managing aortic aneurysms associated with genetic disorders.


Assuntos
Aneurisma Aórtico/fisiopatologia , Síndrome de Marfan/genética , Mitocôndrias/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Síndrome de Marfan/fisiopatologia , Camundongos
5.
Br J Pharmacol ; 178(8): 1836-1854, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33556997

RESUMO

BACKGROUND AND PURPOSE: KV 1.3 channels are expressed in vascular smooth muscle cells (VSMCs), where they contribute to proliferation rather than contraction and participate in vascular remodelling. KV 1.3 channels are also expressed in macrophages, where they assemble with KV 1.5 channels (KV 1.3/KV 1.5), whose activation generates a KV current. In macrophages, the KV 1.3/KV 1.5 ratio is increased by classical activation (M1). Whether these channels are involved in angiotensin II (AngII)-induced vascular remodelling, and whether they can modulate the macrophage phenotype in hypertension, remains unknown. We characterized the role of KV 1.3 channels in vascular damage in hypertension. EXPERIMENTAL APPROACH: We used AngII-infused mice treated with two selective KV 1.3 channel inhibitors (HsTX[R14A] and [EWSS]ShK). Vascular function and structure were measured using wire and pressure myography, respectively. VSMC and macrophage electrophysiology were studied using the patch-clamp technique; gene expression was analysed using RT-PCR. KEY RESULTS: AngII increased KV 1.3 channel expression in mice aorta and peritoneal macrophages which was abolished by HsTX[R14A] treatment. KV 1.3 inhibition did not prevent hypertension, vascular remodelling, or stiffness but corrected AngII-induced macrophage infiltration and endothelial dysfunction in the small mesenteric arteries and/or aorta, via a mechanism independent of electrophysiological changes in VSMCs. AngII modified the electrophysiological properties of peritoneal macrophages, indicating an M1-like activated state, with enhanced expression of proinflammatory cytokines that induced endothelial dysfunction. These effects were prevented by KV 1.3 blockade. CONCLUSIONS AND IMPLICATIONS: We unravelled a new role for KV 1.3 channels in the macrophage-dependent endothelial dysfunction induced by AngII in mice which might be due to modulation of macrophage phenotype.


Assuntos
Angiotensina II , Hipertensão , Angiotensina II/toxicidade , Animais , Hipertensão/induzido quimicamente , Macrófagos , Camundongos , Miócitos de Músculo Liso , Remodelação Vascular
6.
Antioxidants (Basel) ; 9(10)2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33020373

RESUMO

Perivascular adipose tissue (PVAT) is increasingly being regarded as an important endocrine organ that directly impacts vessel function, structure, and contractility in obesity-associated diseases. We uncover here a role for myeloid G protein-coupled receptor kinase 2 (GRK2) in the modulation of PVAT-dependent vasodilation responses. GRK2 expression positively correlates with myeloid- (CD68) and lymphoid-specific (CD3, CD4, and CD8) markers and with leptin in PVAT from patients with abdominal aortic aneurysms. Using mice hemizygous for GRK2 in the myeloid lineage (LysM-GRK2+/-), we found that GRK2 deficiency in myeloid cells allows animals to preserve the endothelium-dependent acetylcholine or insulin-induced relaxation, which is otherwise impaired by PVAT, in arteries of animals fed a high fat diet (HFD). Downregulation of GRK2 in myeloid cells attenuates HFD-dependent infiltration of macrophages and T lymphocytes in PVAT, as well as the induction of tumor necrosis factor-α (TNFα) and NADPH oxidase (Nox)1 expression, whereas blocking TNFα or Nox pathways by pharmacological means can rescue the impaired vasodilator responses to insulin in arteries with PVAT from HFD-fed animals. Our results suggest that myeloid GRK2 could be a potential therapeutic target in the development of endothelial dysfunction induced by PVAT in the context of obesity.

7.
Antioxidants (Basel) ; 9(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854368

RESUMO

Antioxidant compounds, including polyphenols, have therapeutic effects because of their anti-inflammatory, antihypertensive, antithrombotic and antiproliferative properties. They play important roles in protecting the cardiovascular and neurological systems, by having preventive or protective effects against free radicals produced by either normal or pathological metabolism in such systems. For instance, resveratrol, a well-known potent antioxidant, has a counteracting effect on the excess of reactive oxygen species (ROS) and has a number of therapeutic benefits, like anti-inflammatory, anti-cancer and cardioprotective activities. Based on previous work from our group, and on the most frequent OH substitutions of natural polyphenols, we designed two series of synthetically accessible bis-polyhydroxyphenyl derivatives, separated by amide or urea linkers. These compounds exhibit high antioxidant ability (oxygen radical absorbance capacity (ORAC) assay) and interesting radical scavenging activity (RSA) values (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and α,α-diphenyl-ß-picrylhydrazyl (DPPH) tests). Some of the best polyphenols were evaluated in two biological systems, endothelial cells (in vitro) and whole aorta (ex vivo), highly susceptible for the deleterious effects of prooxidants under different inflammatory conditions, showing protection against oxidative stress induced by inflammatory stimuli relevant in cardiovascular diseases, i.e., Angiotensin II and IL-1ß. Selected compounds also showed strong in vivo antioxidant properties when evaluated in the model organism Saccharomyces cerevisiae.

8.
Cell Rep ; 28(5): 1296-1306.e6, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31365871

RESUMO

Organ regeneration is preceded by the recruitment of innate immune cells, which play an active role during repair and regrowth. Here, we studied macrophage subtypes during organ regeneration in the zebrafish, an animal model with a high regenerative capacity. We identified a macrophage subpopulation expressing Wilms tumor 1b (wt1b), which accumulates within regenerating tissues. This wt1b+ macrophage population exhibited an overall pro-regenerative gene expression profile and different migratory behavior compared to the remainder of the macrophages. Functional studies showed that wt1b regulates macrophage migration and retention at the injury area. Furthermore, wt1b-null mutant zebrafish presented signs of impaired macrophage differentiation, delayed fin growth upon caudal fin amputation, and reduced cardiomyocyte proliferation following cardiac injury that correlated with altered macrophage recruitment to the regenerating areas. We describe a pro-regenerative macrophage subtype in the zebrafish and a role for wt1b in organ regeneration.


Assuntos
Nadadeiras de Animais/fisiologia , Coração/fisiologia , Macrófagos/metabolismo , Regeneração , Proteínas WT1/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Macrófagos/citologia , Proteínas WT1/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
9.
Am J Physiol Renal Physiol ; 315(6): F1670-F1682, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30280597

RESUMO

Mouse adipocytes have been reported to release aldosterone and reduce endothelium-dependent relaxation. It is unknown whether perivascular adipose tissue (PVAT) releases aldosterone in humans. The present experiments were designed to test the hypothesis that human PVAT releases aldosterone and induces endothelial dysfunction. Vascular reactivity was assessed in human internal mammary and renal segmental arteries obtained at surgery. The arteries were prepared with/without PVAT, and changes in isometric tension were measured in response to the vasoconstrictor thromboxane prostanoid receptor agonist U46619 and the endothelium-dependent vasodilator acetylcholine. The effects of exogenous aldosterone and of mineralocorticoid receptor (MR) antagonist eplerenone were determined. Aldosterone concentrations were measured by ELISA in conditioned media incubated with human adipose tissue with/without angiotensin II stimulation. Presence of aldosterone synthase and MR mRNA was examined in perirenal, abdominal, and mammary PVAT by PCR. U46619 -induced tension and acetylcholine-induced relaxation were unaffected by exogenous and endogenous aldosterone (addition of aldosterone and MR blocker) in mammary and renal segmental arteries, both in the presence and absence of PVAT. Aldosterone release from incubated perivascular fat was not detectable. Aldosterone synthase expression was not consistently observed in human adipose tissues in contrast to that of MR. Thus, exogenous aldosterone does not affect vascular reactivity and endothelial function in ex vivo human arterial segments, and the tested human adipose tissues have no capacity to synthesize/release aldosterone. In perspective, physiologically relevant effects of aldosterone on vascular function in humans are caused by systemic aldosterone originating from the adrenal gland.


Assuntos
Tecido Adiposo/metabolismo , Aldosterona/metabolismo , Artéria Torácica Interna/metabolismo , Comunicação Parácrina , Artéria Renal/metabolismo , Vasoconstrição , Idoso , Meios de Cultivo Condicionados/metabolismo , Feminino , Humanos , Masculino , Artéria Torácica Interna/cirurgia , Pessoa de Meia-Idade , Artéria Renal/cirurgia , Via Secretória , Transdução de Sinais , Técnicas de Cultura de Tecidos
10.
Pharmacol Res ; 133: 236-249, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29309904

RESUMO

Cyclooxygenase-2 (COX-2) derived-prostanoids participate in the altered vascular function and mechanical properties in cardiovascular diseases. We investigated whether regulator of calcineurin 1 (Rcan1) participates in vascular contractility and stiffness through the regulation of COX-2. For this, wild type (Rcan1+/+) and Rcan1-deficient (Rcan1-/-) mice untreated or treated with the COX-2 inhibitor rofecoxib were used. Vascular function and structure were analysed by myography. COX-2 and phospo-p65 expression were studied by western blotting and immunohistochemistry and TXA2 production by ELISA. We found that Rcan1 deficiency increases COX-2 and IL-6 expression and NF-κB activation in arteries and vascular smooth muscle cells (VSMC). Adenoviral-mediated re-expression of Rcan1.4 in Rcan1-/- VSMC normalized COX-2 expression. Phenylephrine-induced vasoconstrictor responses were greater in aorta from Rcan1-/- compared to Rcan1+/+ mice. This increased response were diminished by etoricoxib, furegrelate, SQ 29548, cyclosporine A and parthenolide, inhibitors of COX-2, TXA2 synthase, TP receptors, calcineurin and NF-κB, respectively. Endothelial removal and NOS inhibition increased phenylephrine responses only in Rcan1+/+ mice. TXA2 levels were greater in Rcan1-/- mice. In small mesenteric arteries, vascular function and structure were similar in both groups of mice; however, vessels from Rcan1-/- mice displayed an increase in vascular stiffness that was diminished by rofecoxib. In conclusion, our results suggest that Rcan1 might act as endogenous negative modulator of COX-2 expression and activity by inhibiting calcineurin and NF-kB pathways to maintain normal contractility and vascular stiffness in aorta and small mesenteric arteries, respectively. Our results uncover a new role for Rcan1 in vascular contractility and mechanical properties.


Assuntos
Aorta Torácica/fisiologia , Ciclo-Oxigenase 2/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Artérias Mesentéricas/fisiologia , Proteínas Musculares/fisiologia , Músculo Liso Vascular/fisiologia , Animais , Proteínas de Ligação ao Cálcio , Células Cultivadas , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia
11.
Methods Mol Biol ; 1527: 283-295, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28116724

RESUMO

The study of adipose tissue and more specifically of adipocytes is considered pivotal for dissecting molecular mechanisms responsible for alterations in several organs and systems, including adipose tissue, not only in obesity but also in other diseases (hypertension, heart failure). Adipose tissue is a complex tissue composed of adipocytes and the stromal vascular fraction which includes a heterogeneous population of preadipocytes, blood cells, endothelial cells, and macrophages. In the present chapter, methods are detailed to generate purified mature adipocytes from white adipose tissue by using enzymatic digestion. Such methods should help laboratories to study the specific roles of adipocytes in different pathologies and are easily adaptable to different animal models. Moreover, as gene activity is controlled at both transcriptional and posttranscriptional levels, it is very important to determine the levels of messenger ribonucleic acid (mRNA) of genes of interest. This process involves the isolation of total RNA and subsequent analysis of the mRNA of interest by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Given the unique nature of adipose tissue and adipocytes (i.e., containing high amounts of lipid), we have set up a special RNA isolation technique in both white adipose tissue and isolated mature adipocytes from mice. In summary, isolation and culture of adipocytes in vivo and gene expression studies will help to understand the mechanisms that control adipocyte function in physiological and pathological states and may lead to design interventions that might affect the adipocyte birth-death balance or phenotype.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo/citologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Células Cultivadas , Macrófagos/metabolismo , Camundongos
12.
Biosci Rep ; 36(5)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27612496

RESUMO

High doses of Ang II receptor (AT1R) blockers (ARBs) are renoprotective in diabetes. Underlying mechanisms remain unclear. We evaluated whether high/ultra-high doses of candesartan (ARB) up-regulate angiotensin-converting enzyme 2 (ACE2)/Ang II type 2 receptor (AT2R)/Mas receptor [protective axis of the of the renin-angiotensin system (RAS)] in diabetic mice. Systolic blood pressure (SBP), albuminuria and expression/activity of RAS components were assessed in diabetic db/db and control db/+ mice treated with increasing candesartan doses (intermediate, 1 mg/kg/d; high, 5 mg/kg/d; ultra-high, 25 and 75 mg/kg/d; 4 weeks). Lower doses candesartan did not influence SBP, but ultra-high doses reduced SBP in both groups. Plasma glucose and albuminuria were increased in db/db compared with db/+ mice. In diabetic mice treated with intermediate dose candesartan, renal tubular damage and albuminuria were ameliorated and expression of ACE2, AT2R and Mas and activity of ACE2 were increased, effects associated with reduced ERK1/2 phosphorylation, decreased fibrosis and renal protection. Ultra-high doses did not influence the ACE2/AT2R/Mas axis and promoted renal injury with increased renal ERK1/2 activation and exaggerated fibronectin expression in db/db mice. Our study demonstrates dose-related effects of candesartan in diabetic nephropathy: intermediate-high dose candesartan is renoprotective, whereas ultra-high dose candesartan induces renal damage. Molecular processes associated with these effects involve differential modulation of the ACE2/AT2R/Mas axis: intermediate-high dose candesartan up-regulating RAS protective components and attenuating pro-fibrotic processes, and ultra-high doses having opposite effects. These findings suggest novel mechanisms through the protective RAS axis, whereby candesartan may ameliorate diabetic nephropathy. Our findings also highlight potential injurious renal effects of ultra-high dose candesartan in diabetes.


Assuntos
Benzimidazóis/administração & dosagem , Nefropatias Diabéticas/genética , Peptidil Dipeptidase A/genética , Proteínas Proto-Oncogênicas/genética , Receptor Tipo 2 de Angiotensina/genética , Receptores Acoplados a Proteínas G/genética , Tetrazóis/administração & dosagem , Bloqueadores do Receptor Tipo 2 de Angiotensina II/administração & dosagem , Enzima de Conversão de Angiotensina 2 , Animais , Compostos de Bifenilo , Glicemia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Humanos , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Fosforilação , Proto-Oncogene Mas , Sistema Renina-Angiotensina/genética
13.
Clin Sci (Lond) ; 130(20): 1823-36, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27413020

RESUMO

PPARß/δ activation protects against endothelial dysfunction in diabetic models. Elevated glucose is known to impair cAMP-induced relaxation and Kv channel function in coronary arteries (CA). Herein, we aimed to analyse the possible protective effects of the PPARß/δ agonist GW0742 on the hyperglycaemic-induced impairment of cAMP-induced relaxation and Kv channel function in rat CA. As compared with low glucose (LG), incubation under high glucose (HG) conditions attenuated the relaxation induced by the adenylate cyclase activator forskolin in CA and this was prevented by GW0742. The protective effect of GW0742 was supressed by a PPARß/δ antagonist. In myocytes isolated from CA under LG, forskolin enhanced Kv currents and induced hyperpolarization. In contrast, when CA were incubated with HG, Kv currents were diminished and the electrophysiological effects of forskolin were abolished. These deleterious effects were prevented by GW0742. The protective effects of GW0742 on forskolin-induced relaxation and Kv channel function were confirmed in CA from type-1 diabetic rats. In addition, the differences in the relaxation induced by forskolin in CA incubated under LG, HG or HG + GW0742 were abolished by the Kv7 channel inhibitor XE991. Accordingly, GW0742 prevented the down-regulation of Kv7 channels induced by HG. Finally, the preventive effect of GW0742 on oxidative stress and cAMP-induced relaxation were overcome by the pyruvate dehydrogenase kinase 4 (PDK4) inhibitor dichloroacetate (DCA). Our results reveal that the PPARß/δ agonist GW0742 prevents the impairment of the cAMP-mediated relaxation in CA under HG. This protective effect was associated with induction of PDK4, attenuation of oxidative stress and preservation of Kv7 channel function.


Assuntos
Vasos Coronários/metabolismo , AMP Cíclico/metabolismo , Hiperglicemia/metabolismo , Canal de Potássio KCNQ1/metabolismo , PPAR delta/metabolismo , PPAR beta/metabolismo , Animais , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/fisiopatologia , Diabetes Mellitus Experimental , Humanos , Hiperglicemia/genética , Canal de Potássio KCNQ1/genética , Masculino , PPAR delta/genética , PPAR beta/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Tiazóis/administração & dosagem , Vasodilatação/efeitos dos fármacos
14.
J Hypertens ; 34(2): 253-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26682942

RESUMO

OBJECTIVE: NOX-1 and NOX-4 are key enzymes responsible for reactive oxygen species (ROS) generation in vascular smooth muscle cells (VSMC). The RNA-binding protein Hu antigen R (HuR) is implicated in posttranscriptional regulation of gene expression; however, its role regulating NOX is unknown. We investigated transcriptional and posttranscriptional mechanisms underlying angiotensin II (AngII) and IL-1ß regulation of NOX-1 and NOX-4 in VSMC and their implications in cell migration. METHODS: Rat and human VSMC were stimulated with AngII (0.1 µmol/l) and/or IL-1ß (10 ng/ml). NOX-1 and NOX-4 mRNA and protein levels, NOX-1 and NOX-4 promoter and 3'UTR activities, NADPH oxidase activity, ROS production, and cell migration were studied. RESULTS: IL-1ß increased NOX-1 expression, NADPH oxidase activity and ROS production, and decreased NOX-4 expression and H2O2 production in VSMC. AngII potentiated the IL-1ß-mediated induction of NOX-1 expression, NADPH oxidase activity, ROS production, and cell migration. However, AngII did not influence IL-1ß-induced NOX-4 downregulation. AngII + IL-1ß interfered with the decay of NOX-1 mRNA and promoted HuR binding to NOX-1 mRNA. Moreover, HuR blockade reduced NOX-1 mRNA stability and AngII + IL-1ß-induced NOX-1 mRNA levels. IL-1ß decreased NOX-4 expression through a transcriptional mechanism that involved response elements situated in the proximal promoter. AngII and/or IL-1ß-induced cell migration were prevented by NOX-1 and HuR blockade and were augmented by NOX-4 overexpression. CONCLUSION: In VSMC HuR-mediated mRNA stabilization is partially responsible for AngII + IL-1ß-dependent NOX-1 expression, whereas transcriptional mechanisms are involved in decreased NOX-4 expression induced by IL-1ß. NOX4 and HuR regulation of NOX-1 contributes to VSMC migration, important in vascular inflammation and remodeling.


Assuntos
Angiotensina II/farmacologia , Proteína Semelhante a ELAV 1/metabolismo , Interleucina-1beta/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Cultivadas , Proteína Semelhante a ELAV 1/antagonistas & inibidores , Regulação da Expressão Gênica , Humanos , Peróxido de Hidrogênio/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , NADH NADPH Oxirredutases/efeitos dos fármacos , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , NADPH Oxidase 4 , NADPH Oxidases/efeitos dos fármacos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo
15.
Can J Cardiol ; 31(5): 631-41, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25936489

RESUMO

Hypertension is a major cardiovascular risk factor. Of the many processes involved in the pathophysiology of hypertension, vascular damage due to oxidative stress (excess bioavailability of reactive oxygen species [ROS]) is particularly important. Physiologically, ROS regulate vascular function through redox-sensitive signalling pathways. In hypertension, oxidative stress promotes endothelial dysfunction, vascular remodelling, and inflammation, leading to vascular damage. Vascular ROS are derived primarily by nicotinamide adenine dinucleotide phosphate oxidases, which are prime targets for therapeutic development. Although experimental evidence indicates a causative role for oxidative stress in hypertension, human data are less convincing. This might relate, in part, to suboptimal methods to accurately assess the redox state. Herein we review current knowledge on oxidative stress in vascular pathobiology and implications in human hypertension. We also discuss biomarkers to assess the redox state in the clinic, highlight novel strategies to inhibit ROS production, and summarize how lifestyle modifications promote vascular health by reducing oxidative stress.


Assuntos
Antioxidantes/uso terapêutico , Hipertensão/etiologia , Hipertensão/terapia , Estilo de Vida , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Alopurinol/uso terapêutico , Animais , Anti-Hipertensivos/uso terapêutico , Biomarcadores/sangue , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Feminino , Humanos , Hipertensão/fisiopatologia , Masculino , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Prognóstico , Medição de Risco , Índice de Gravidade de Doença , Resultado do Tratamento , Xantina Oxidase/antagonistas & inibidores
16.
Hypertension ; 58(3): 479-88, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21788604

RESUMO

Adipose tissue influences vascular function through adipocyte-derived factors, including components of the renin-angiotensin-aldosterone system. Molecular mechanisms underlying these phenomena are elusive. We investigated the role of adipocyte-derived factors on mitogen-activated protein kinases (MAPKs), proinflammatory status, apoptosis, and mitogenic signaling in vascular smooth muscle cells (VSMCs) and questioned whether these effects involve mineralocorticoid receptor (MR), glucocorticoid receptor (GR), and angiotensin II type 1 receptor (AT(1)R). Cultured mouse VSMCs were exposed to adipocyte-conditioned medium (ACM) from differentiated 3T3-L1 adipocytes. ACM induced phosphorylation of stress-activated protein kinase/c-Jun N-terminal kinase, p38MAPK, and extracellular signal-regulated kinase 1/2 and increased expression of proinflammatory and proliferative markers in VSMCs. Eplerenone (MR antagonist), mifepristone (GR antagonist), and candesartan (AT(1)R antagonist) inhibited ACM-induced effects on extracellular signal-regulated kinase 1/2, p38MAPK, and proliferating cell nuclear antigen, without influencing apoptosis (Bax, Bcl, and caspase 3). Stress-activated protein kinase/c-Jun N-terminal kinase phosphorylation was inhibited by mifepristone and candesartan but not by eplerenone. ACM-induced increase of fibronectin, vascular cell adhesion molecule 1, and plasminogen activator inhibitor 1 expression was blocked by MR and AT(1)R antagonism but not by GR inhibition. ACM has no effect on GR, MR, and AT(1)R expression. Our data show that adipocyte-derived factors influence MAPK signaling, leading to VSMC proinflammatory and profibrotic responses through distinct pathways. Although ACM stimulates p38MAPK and extracellular signal-regulated kinase 1/2 phosphorylation through MR, GR, and AT(1)R, activation of stress-activated protein kinase/c-Jun N-terminal kinase involves GR and AT(1)R. These findings suggest that adipocyte-derived factors regulate VSMC function through specific MAPKs linked to MR, GR, and AT(1)R, a posttranslational phenomenon, because ACM did not influence receptor expression. Such cross-talk between adipocytes and VSMCs may provide a potential molecular mechanism linking renin-angiotensin-aldosterone system, adipocytes, and vascular function.


Assuntos
Adipócitos/metabolismo , Meios de Cultivo Condicionados/farmacologia , Miócitos de Músculo Liso/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Aldosterona/metabolismo , Angiotensina II/metabolismo , Animais , Western Blotting , Células Cultivadas , Corticosterona/metabolismo , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/metabolismo , Eplerenona , Fadrozol/farmacologia , Fibronectinas/metabolismo , Antagonistas de Hormônios/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Mifepristona/farmacologia , Antagonistas de Receptores de Mineralocorticoides , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Fosforilação/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Espironolactona/análogos & derivados , Espironolactona/farmacologia
17.
J Am Soc Hypertens ; 5(3): 137-53, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21419746

RESUMO

The functional significance and regulation of NAD(P)H oxidase (Nox) isoforms by angiotensin II (Ang II) and endothelin-1 (ET-1) in vascular smooth muscle cells (VSMCs) from normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) was studied. Expression of Nox1, Nox2, and Nox4 (gene and protein) and NAD(P)H oxidase activity were increased in SHR. Basal NAD(P)H oxidase activity was blocked by GKT136901 (Nox1/4 inhibitor) and by Nox1 siRNA in WKY cells and by siNOX1 and siNOX2 in SHR. Whereas Ang II increased expression of all Noxes in WKY, only Nox1 was influenced in SHR. Ang II-induced NAD(P)H activity was inhibited by siNOX1 in WKY and by siNOX1 and siNOX2 in SHR. ET-1 upregulated Nox expression only in WKY and increased NAD(P)H oxidase activity, an effect inhibited by siNOX1 and siNOX2. Nox1 co-localized with Nox2 but not with Nox4, implicating association between Nox1 and Nox2 but not between Nox1 and Nox4. These data highlight the complexity of Nox biology in VSMCs, emphasising that more than one Nox member, alone or in association, may be involved in NAD(P)H oxidase-mediated •O(2)(-) production. Nox1 regulation by Ang II, but not by ET-1, may be important in •O(2)(-) formation in VSMCs from SHR.


Assuntos
Angiotensina II/metabolismo , Endotelina-1/metabolismo , Hipertensão/enzimologia , Glicoproteínas de Membrana , Miócitos de Músculo Liso/enzimologia , NADH NADPH Oxirredutases , NADPH Oxidases , Animais , Células Cultivadas , Regulação Enzimológica da Expressão Gênica , Hipertensão/patologia , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/metabolismo , Músculo Liso Vascular/enzimologia , NADH NADPH Oxirredutases/antagonistas & inibidores , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , NADPH Oxidase 2 , NADPH Oxidase 4 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Oxirredução , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Especificidade da Espécie , Superóxidos/metabolismo
18.
Cardiovasc Res ; 73(2): 424-31, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17055466

RESUMO

OBJECTIVE: Large conductance Ca(2+)-activated K(+) channels (BKCa) regulate coronary artery tone in vivo, play a key role in blood pressure regulation, and have been suggested as novel potential drug targets in hypertension. Quercetin exerts systemic and coronary vasodilator effects in vitro and reduces blood pressure in several rat models of hypertension, and its consumption is associated with a lower mortality rate from coronary heart disease in epidemiological studies. We hypothesized that quercetin might activate BKCa channel in isolated myocytes from rat coronary arteries and that this mechanism might be involved in its coronary artery relaxant effects. METHODS: Membrane currents were measured using the whole-cell configuration of the patch-clamp technique. Contractile tension was recorded in rat coronary artery rings mounted in a myograph. RESULTS: Quercetin (>0.1 muM) increased the outward currents in the whole range of test potentials, hyperpolarized cell membranes, and increased the frequency of spontaneous transient outward currents (STOCs) carried by BKCa channels. These effects were abolished by the selective BKCa blocker iberiotoxin and by catalase. Quercetin increased dichlorofluorescein fluorescence in coronary arteries in a polyethylenglycol-catalase-sensitive manner, indicating that it increased cytosolic H(2)O(2). The membrane-permeable analogue of H(2)O(2)t-butylhydroperoxide mimicked the effects of quercetin on outward currents. The vasodilator effect of quercetin in isolated rat coronary arteries was partially inhibited by iberiotoxin. CONCLUSION: Quercetin increased BKCa currents via production of intracellular H(2)O(2). This effect is involved, at least partly, in the coronary vasodilator effects of quercetin.


Assuntos
Vasos Coronários , Peróxido de Hidrogênio/metabolismo , Músculo Liso Vascular/metabolismo , Canais de Potássio/metabolismo , Quercetina/farmacologia , Vasodilatadores/farmacologia , 4-Aminopiridina/farmacologia , Animais , Biomarcadores/análise , Catalase/farmacologia , Frutas , Peróxido de Hidrogênio/análise , Masculino , Músculo Liso Vascular/efeitos dos fármacos , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Ratos , Ratos Wistar , Verduras
19.
Diabetes ; 55(5): 1243-51, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16644678

RESUMO

An emerging body of evidence suggests that vascular remodeling in diabetic patients involves a perturbation of the balance between cell proliferation and cell death. Our aim was to study whether arteries and vascular smooth muscle cells (VSMCs) isolated from diabetic patients exhibit resistance to apoptosis induced by several stimuli. Internal mammary arteries (IMAs) were obtained from patients who had undergone coronary artery bypass graft surgery. Arteries from diabetic patients showed increasing levels of Bcl-2 expression in the media layer, measured by immunofluorescence and by Western blotting. Human IMA VSMCs from diabetic patients showed resistance to apoptosis, measured as DNA fragmentation and caspase-3 activation, induced by C-reactive protein (CRP) and other stimuli, such as hydrogen peroxide and 7beta-hydroxycholesterol. The diabetic cells also exhibited overexpression of Bcl-2. Knockdown of Bcl-2 expression with Bcl-2 siRNA in cells from diabetic patients reversed the resistance to induced apoptosis. Consistent with the above, we found that pretreatment of nondiabetic VSMCs with high glucose abolished the degradation of Bcl-2 induced by CRP. Moreover, cell proliferation was increased in diabetic compared with nondiabetic cells. This differential effect was potentiated by glucose. We conclude that the data provide strong evidence that arterial remodeling in diabetic patients results from a combination of decreased apoptosis and increased proliferation.


Assuntos
Apoptose/fisiologia , Vasos Coronários/fisiopatologia , Angiopatias Diabéticas/cirurgia , Músculo Liso Vascular/fisiopatologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Idoso , Colágeno/análise , Vasos Coronários/patologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/fisiopatologia , Elastina/análise , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Humanos , Anastomose de Artéria Torácica Interna-Coronária , Masculino , Manitol/farmacologia , Pessoa de Meia-Idade , Músculo Liso Vascular/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA