Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
medRxiv ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37790370

RESUMO

Neonatal infections due to Paenibacillus species have increasingly been reported over the last few years. We performed a structured literature review of human Paenibacillus infections in infants and adults to compare the epidemiology of infections between these distinct patient populations. Thirty-nine reports describing 176 infections met our inclusion criteria and were included. There were 37 Paenibacillus infections occurring in adults caused by 23 species. The clinical presentations of infections were quite variable. In contrast, infections in infants were caused by only 3 species: P. thiaminolyticus (112/139, 80%), P. alvei (2/139, 1%) and P. dendritiformis (2/139, 1%). All of the infants with Paenibacillus infection presented with a sepsis syndrome or meningitis, often complicated by extensive cerebral destruction and hydrocephalus. Outcomes were commonly poor with 17% (24/139) mortality. Cystic encephalomalacia due to brain destruction was common in both Ugandan and American cases and 92/139 (66%) required surgical management of hydrocephalus following their infection. Paenibacillus infections are likely underappreciated in infants and effective treatments are urgently needed.

2.
Blood Adv ; 7(7): 1297-1307, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36417763

RESUMO

Detection of hallmark genomic aberrations in acute myeloid leukemia (AML) is essential for diagnostic subtyping, prognosis, and patient management. However, cytogenetic/cytogenomic techniques used to identify those aberrations, such as karyotyping, fluorescence in situ hybridization (FISH), or chromosomal microarray analysis (CMA), are limited by the need for skilled personnel as well as significant time, cost, and labor. Optical genome mapping (OGM) provides a single, cost-effective assay with a significantly higher resolution than karyotyping and with a comprehensive genome-wide analysis comparable with CMA and the added unique ability to detect balanced structural variants (SVs). Here, we report in a real-world setting the performance of OGM in a cohort of 100 AML cases that were previously characterized by karyotype alone or karyotype and FISH or CMA. OGM identified all clinically relevant SVs and copy number variants (CNVs) reported by these standard cytogenetic methods when representative clones were present in >5% allelic fraction. Importantly, OGM identified clinically relevant information in 13% of cases that had been missed by the routine methods. Three cases reported with normal karyotypes were shown to have cryptic translocations involving gene fusions. In 4% of cases, OGM findings would have altered recommended clinical management, and in an additional 8% of cases, OGM would have rendered the cases potentially eligible for clinical trials. The results from this multi-institutional study indicate that OGM effectively recovers clinically relevant SVs and CNVs found by standard-of-care methods and reveals additional SVs that are not reported. Furthermore, OGM minimizes the need for labor-intensive multiple cytogenetic tests while concomitantly maximizing diagnostic detection through a standardized workflow.


Assuntos
Aberrações Cromossômicas , Leucemia Mieloide Aguda , Humanos , Hibridização in Situ Fluorescente , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Cariótipo , Mapeamento Cromossômico
3.
Nature ; 611(7935): 387-398, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36289338

RESUMO

Acute myeloid leukaemia (AML) represents a set of heterogeneous myeloid malignancies, and hallmarks include mutations in epigenetic modifiers, transcription factors and kinases1-5. The extent to which mutations in AML drive alterations in chromatin 3D structure and contribute to myeloid transformation is unclear. Here we use Hi-C and whole-genome sequencing to analyse 25 samples from patients with AML and 7 samples from healthy donors. Recurrent and subtype-specific alterations in A/B compartments, topologically associating domains and chromatin loops were identified. RNA sequencing, ATAC with sequencing and CUT&Tag for CTCF, H3K27ac and H3K27me3 in the same AML samples also revealed extensive and recurrent AML-specific promoter-enhancer and promoter-silencer loops. We validated the role of repressive loops on their target genes by CRISPR deletion and interference. Structural variation-induced enhancer-hijacking and silencer-hijacking events were further identified in AML samples. Hijacked enhancers play a part in AML cell growth, as demonstrated by CRISPR screening, whereas hijacked silencers have a downregulating role, as evidenced by CRISPR-interference-mediated de-repression. Finally, whole-genome bisulfite sequencing of 20 AML and normal samples revealed the delicate relationship between DNA methylation, CTCF binding and 3D genome structure. Treatment of AML cells with a DNA hypomethylating agent and triple knockdown of DNMT1, DNMT3A and DNMT3B enabled the manipulation of DNA methylation to revert 3D genome organization and gene expression. Overall, this study provides a resource for leukaemia studies and highlights the role of repressive loops and hijacked cis elements in human diseases.


Assuntos
Genoma Humano , Leucemia Mieloide Aguda , Humanos , Cromatina/genética , Metilação de DNA , Leucemia Mieloide Aguda/genética , Genoma Humano/genética , Regiões Promotoras Genéticas , Elementos Facilitadores Genéticos , Inativação Gênica , Reprodutibilidade dos Testes , Sistemas CRISPR-Cas , Análise de Sequência , DNA (Citosina-5-)-Metiltransferases , Regulação Leucêmica da Expressão Gênica
4.
Mol Cancer Res ; 20(9): 1420-1428, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35657601

RESUMO

Human papillomavirus (HPV)-positive head and neck cancers, predominantly oropharyngeal squamous cell carcinoma (OPSCC), exhibit epidemiologic, clinical, and molecular characteristics distinct from those OPSCCs lacking HPV. We applied a combination of whole-genome sequencing and optical genome mapping to interrogate the genome structure of HPV-positive OPSCCs. We found that the virus had integrated in the host genome in two thirds of the tumors examined but resided solely extrachromosomally in the other third. Integration of the virus occurred at essentially random sites within the genome. Focal amplification of the virus and the genomic sequences surrounding it often occurred subsequent to integration, with the number of tandem repeats in the chromosome accounting for the increased copy number of the genome sequences flanking the site of integration. In all cases, viral integration correlated with pervasive genome-wide somatic alterations at sites distinct from that of viral integration and comprised multiple insertions, deletions, translocations, inversions, and point mutations. Few or no somatic mutations were present in tumors with only episomal HPV. Our data could be interpreted by positing that episomal HPV is captured in the host genome following an episode of global genome instability during tumor development. Viral integration correlated with higher grade tumors, which may be explained by the associated extensive mutation of the genome and suggests that HPV integration status may inform prognosis. IMPLICATIONS: Our results indicate that HPV integration in head and neck cancer correlates with extensive pangenomic structural variation, which may have prognostic implications.


Assuntos
Alphapapillomavirus , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Alphapapillomavirus/genética , Carcinoma de Células Escamosas/genética , DNA Viral/genética , Instabilidade Genômica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neoplasias Orofaríngeas/genética , Papillomaviridae/genética , Infecções por Papillomavirus/genética , Integração Viral/genética
5.
BMC Genomics ; 23(1): 439, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698050

RESUMO

We introduce mirTarRnaSeq, an R/Bioconductor package for quantitative assessment of miRNA-mRNA relationships within sample cohorts. mirTarRnaSeq is a statistical package to explore predicted or pre-hypothesized miRNA-mRNA relationships following target prediction.We present two use cases applying mirTarRnaSeq. First, to identify miRNA targets, we examined EBV miRNAs for interaction with human and virus transcriptomes of stomach adenocarcinoma. This revealed enrichment of mRNA targets highly expressed in CD105+ endothelial cells, monocytes, CD4+ T cells, NK cells, CD19+ B cells, and CD34 cells. Next, to investigate miRNA-mRNA relationships in SARS-CoV-2 (COVID-19) infection across time, we used paired miRNA and RNA sequenced datasets of SARS-CoV-2 infected lung epithelial cells across three time points (4, 12, and 24 hours post-infection). mirTarRnaSeq identified evidence for human miRNAs targeting cytokine signaling and neutrophil regulation immune pathways from 4 to 24 hours after SARS-CoV-2 infection. Confirming the clinical relevance of these predictions, three of the immune specific mRNA-miRNA relationships identified in human lung epithelial cells after SARS-CoV-2 infection were also observed to be differentially expressed in blood from patients with COVID-19. Overall, mirTarRnaSeq is a robust tool that can address a wide-range of biological questions providing improved prediction of miRNA-mRNA interactions.


Assuntos
COVID-19 , MicroRNAs , COVID-19/genética , Células Endoteliais , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , SARS-CoV-2
6.
J Pers Med ; 11(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670576

RESUMO

Genomic structural variants comprise a significant fraction of somatic mutations driving cancer onset and progression. However, such variants are not readily revealed by standard next-generation sequencing. Optical genome mapping (OGM) surpasses short-read sequencing in detecting large (>500 bp) and complex structural variants (SVs) but requires isolation of ultra-high-molecular-weight DNA from the tissue of interest. We have successfully applied a protocol involving a paramagnetic nanobind disc to a wide range of solid tumors. Using as little as 6.5 mg of input tumor tissue, we show successful extraction of high-molecular-weight genomic DNA that provides a high genomic map rate and effective coverage by optical mapping. We demonstrate the system's utility in identifying somatic SVs affecting functional and cancer-related genes for each sample. Duplicate/triplicate analysis of select samples shows intra-sample reliability but also intra-sample heterogeneity. We also demonstrate that simply filtering SVs based on a GRCh38 human control database provides high positive and negative predictive values for true somatic variants. Our results indicate that the solid tissue DNA extraction protocol, OGM and SV analysis can be applied to a wide variety of solid tumors to capture SVs across the entire genome with functional importance in cancer prognosis and treatment.

7.
Nat Commun ; 11(1): 3696, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728046

RESUMO

ENCODE comprises thousands of functional genomics datasets, and the encyclopedia covers hundreds of cell types, providing a universal annotation for genome interpretation. However, for particular applications, it may be advantageous to use a customized annotation. Here, we develop such a custom annotation by leveraging advanced assays, such as eCLIP, Hi-C, and whole-genome STARR-seq on a number of data-rich ENCODE cell types. A key aspect of this annotation is comprehensive and experimentally derived networks of both transcription factors and RNA-binding proteins (TFs and RBPs). Cancer, a disease of system-wide dysregulation, is an ideal application for such a network-based annotation. Specifically, for cancer-associated cell types, we put regulators into hierarchies and measure their network change (rewiring) during oncogenesis. We also extensively survey TF-RBP crosstalk, highlighting how SUB1, a previously uncharacterized RBP, drives aberrant tumor expression and amplifies the effect of MYC, a well-known oncogenic TF. Furthermore, we show how our annotation allows us to place oncogenic transformations in the context of a broad cell space; here, many normal-to-tumor transitions move towards a stem-like state, while oncogene knockdowns show an opposing trend. Finally, we organize the resource into a coherent workflow to prioritize key elements and variants, in addition to regulators. We showcase the application of this prioritization to somatic burdening, cancer differential expression and GWAS. Targeted validations of the prioritized regulators, elements and variants using siRNA knockdowns, CRISPR-based editing, and luciferase assays demonstrate the value of the ENCODE resource.


Assuntos
Bases de Dados Genéticas , Genômica , Neoplasias/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Redes Reguladoras de Genes , Humanos , Mutação/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo
8.
Cancer ; 126(12): 2775-2783, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32187665

RESUMO

BACKGROUND: Endometrial hyperplasia is a precursor to endometrioid adenocarcinoma (EMC), the most common uterine cancer. The likelihood of progression to carcinoma may be evaluated by histologic subclassification of endometrial hyperplasia, although these subclasses are subjective and only modestly reproducible among pathologists. Patient care would be improved by a more objective test to predict the risk of cancer progression. METHODS: Next-generation sequencing was performed on archived endometrial biopsy specimens from a retrospective cohort of women with endometrial hyperplasia. Cases were considered to be either progressing if the patient subsequently developed EMC or resolving if the patient had a subsequent negative tissue sampling or no cancer during medium-term follow-up (32 patients: 15 progressing and 17 resolving). Somatic mutations in endometrial hyperplasia were assessed for enrichment in progressing cases versus resolving cases, with an emphasis on genes commonly mutated in EMC. RESULTS: Several mutations were more common in progressing hyperplasia than resolving hyperplasia, although significant overlap was observed between progressing and resolving cases. Mutations included those in PTEN, PIK3CA, and FGFR2, genes commonly mutated in EMC. Mutations in ARID1A and MYC were seen only in progressing hyperplasia, although these were uncommon; this limited diagnostic sensitivity. Progressing hyperplasia demonstrated an accumulation of mutations in oncogenic signaling pathways similarly to endometrial carcinoma. CONCLUSIONS: Because of mutational differences between progressing and nonprogressing hyperplasia, mutational analysis may predict the risk of progression from endometrial hyperplasia to EMC.


Assuntos
Carcinoma Endometrioide/genética , Hiperplasia Endometrial/genética , Hiperplasia Endometrial/patologia , Neoplasias do Endométrio/genética , Mutação , Adulto , Idoso , Carcinoma Endometrioide/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Proteínas de Ligação a DNA/genética , Neoplasias do Endométrio/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Estudos Retrospectivos , Fatores de Transcrição/genética , Adulto Jovem
9.
Cancer Res ; 79(21): 5490-5499, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31501191

RESUMO

Highly penetrant hereditary thyroid cancer manifests as familial nonmedullary thyroid cancer (FNMTC), whereas low-penetrance hereditary thyroid cancer manifests as sporadic disease and is associated with common polymorphisms, including rs965513[A]. Whole-exome sequencing of an FNMTC kindred identified a novel Y1203H germline dual oxidase-2 (DUOX2) mutation. DUOX2Y1203H is enzymatically active, with increased production of reactive oxygen species. Furthermore, patients with sporadic thyroid cancer homozygous for rs965513[A] demonstrated higher DUOX2 expression than heterozygous rs965513[A/G] or homozygous rs965513[A]-negative patients. These data suggest that dysregulated hydrogen peroxide metabolism is a common mechanism by which high- and low-penetrance genetic factors increase thyroid cancer risk. SIGNIFICANCE: This study provides novel insights into the genetic and molecular mechanisms underlying familial and sporadic thyroid cancers.


Assuntos
Oxidases Duais/genética , Predisposição Genética para Doença/genética , Polimorfismo Genético/genética , Neoplasias da Glândula Tireoide/genética , Sequência de Aminoácidos , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Alinhamento de Sequência
10.
PLoS Pathog ; 14(10): e1007365, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30372487

RESUMO

Tissue-resident memory CD8 T (TRM) cells defend against microbial reinfections at mucosal barriers; determinants driving durable TRM cell responses in non-mucosal tissues, which often harbor opportunistic persistent pathogens, are unknown. JC polyomavirus (JCPyV) is a ubiquitous constituent of the human virome. With altered immunological status, JCPyV can cause the oft-fatal brain demyelinating disease progressive multifocal leukoencephalopathy (PML). JCPyV is a human-only pathogen. Using the mouse polyomavirus (MuPyV) encephalitis model, we demonstrate that CD4 T cells regulate development of functional antiviral brain-resident CD8 T cells (bTRM) and renders their maintenance refractory to systemic CD8 T cell depletion. Acquired CD4 T cell deficiency, modeled by delaying systemic CD4 T cell depletion until MuPyV-specific CD8 T cells have infiltrated the brain, impacted the stability of CD8 bTRM, impaired their effector response to reinfection, and rendered their maintenance dependent on circulating CD8 T cells. This dependence of CD8 bTRM differentiation on CD4 T cells was found to extend to encephalitis caused by vesicular stomatitis virus. Together, these findings reveal an intimate association between CD4 T cells and homeostasis of functional bTRM to CNS viral infection.


Assuntos
Encéfalo/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Infecções por Polyomavirus/imunologia , Polyomavirus/imunologia , Animais , Encéfalo/virologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular , Feminino , Depleção Linfocítica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Polyomavirus/virologia
11.
Nat Genet ; 50(10): 1388-1398, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202056

RESUMO

Structural variants (SVs) can contribute to oncogenesis through a variety of mechanisms. Despite their importance, the identification of SVs in cancer genomes remains challenging. Here, we present a framework that integrates optical mapping, high-throughput chromosome conformation capture (Hi-C), and whole-genome sequencing to systematically detect SVs in a variety of normal or cancer samples and cell lines. We identify the unique strengths of each method and demonstrate that only integrative approaches can comprehensively identify SVs in the genome. By combining Hi-C and optical mapping, we resolve complex SVs and phase multiple SV events to a single haplotype. Furthermore, we observe widespread structural variation events affecting the functions of noncoding sequences, including the deletion of distal regulatory sequences, alteration of DNA replication timing, and the creation of novel three-dimensional chromatin structural domains. Our results indicate that noncoding SVs may be underappreciated mutational drivers in cancer genomes.


Assuntos
Genoma Humano , Variação Estrutural do Genoma , Neoplasias/genética , Biologia de Sistemas/métodos , Células A549 , Linhagem Celular Tumoral , Mapeamento Cromossômico , DNA de Neoplasias/análise , DNA de Neoplasias/genética , Genes Neoplásicos , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Células K562 , Desequilíbrio de Ligação , Análise de Sequência de DNA/métodos , Integração de Sistemas
12.
PLoS Genet ; 9(8): e1003680, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935537

RESUMO

Conditions of chronic stress are associated with genetic instability in many organisms, but the roles of stress responses in mutagenesis have so far been elucidated only in bacteria. Here, we present data demonstrating that the environmental stress response (ESR) in yeast functions in mutagenesis induced by proteotoxic stress. We show that the drug canavanine causes proteotoxic stress, activates the ESR, and induces mutagenesis at several loci in an ESR-dependent manner. Canavanine-induced mutagenesis also involves translesion DNA polymerases Rev1 and Polζ and non-homologous end joining factor Ku. Furthermore, under conditions of chronic sub-lethal canavanine stress, deletions of Rev1, Polζ, and Ku-encoding genes exhibit genetic interactions with ESR mutants indicative of ESR regulating these mutagenic DNA repair processes. Analyses of mutagenesis induced by several different stresses showed that the ESR specifically modulates mutagenesis induced by proteotoxic stress. Together, these results document the first known example of an involvement of a eukaryotic stress response pathway in mutagenesis and have important implications for mechanisms of evolution, carcinogenesis, and emergence of drug-resistant pathogens and chemotherapy-resistant tumors.


Assuntos
Reparo do DNA/genética , DNA Polimerase Dirigida por DNA/genética , Nucleotidiltransferases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Canavanina/toxicidade , Dano ao DNA/genética , Mutagênese/efeitos dos fármacos , Mutagênese/genética , Mutação , Saccharomyces cerevisiae/genética
13.
Mol Syst Biol ; 9: 665, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23670538

RESUMO

Nucleotide degradation is a universal metabolic capability. Here we combine metabolomics, genetics and biochemistry to characterize the yeast pathway. Nutrient starvation, via PKA, AMPK/SNF1, and TOR, triggers autophagic breakdown of ribosomes into nucleotides. A protein not previously associated with nucleotide degradation, Phm8, converts nucleotide monophosphates into nucleosides. Downstream steps, which involve the purine nucleoside phosphorylase, Pnp1, and pyrimidine nucleoside hydrolase, Urh1, funnel ribose into the nonoxidative pentose phosphate pathway. During carbon starvation, the ribose-derived carbon accumulates as sedoheptulose-7-phosphate, whose consumption by transaldolase is impaired due to depletion of transaldolase's other substrate, glyceraldehyde-3-phosphate. Oxidative stress increases glyceraldehyde-3-phosphate, resulting in rapid consumption of sedoheptulose-7-phosphate to make NADPH for antioxidant defense. Ablation of Phm8 or double deletion of Pnp1 and Urh1 prevent effective nucleotide salvage, resulting in metabolite depletion and impaired survival of starving yeast. Thus, ribose salvage provides means of surviving nutrient starvation and oxidative stress.


Assuntos
Regulação Fúngica da Expressão Gênica , N-Glicosil Hidrolases/genética , Nucleotídeos/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Ribose/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Gliceraldeído 3-Fosfato/metabolismo , N-Glicosil Hidrolases/deficiência , NADP/metabolismo , Via de Pentose Fosfato/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Purina-Núcleosídeo Fosforilase/deficiência , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Estresse Fisiológico/genética , Fosfatos Açúcares , Transaldolase/genética , Transaldolase/metabolismo
14.
Mol Biol Cell ; 24(12): 2045-57, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23615444

RESUMO

All cells perceive and respond to environmental stresses through elaborate stress-sensing networks. Yeast cells sense stress through diverse signaling pathways that converge on the transcription factors Msn2 and Msn4, which respond by initiating rapid, idiosyncratic cycles into and out of the nucleus. To understand the role of Msn2/4 nuclear localization dynamics, we combined time-lapse studies of Msn2-GFP localization in living cells with computational modeling of stress-sensing signaling networks. We find that several signaling pathways, including Ras/protein kinase A, AMP-activated kinase, the high-osmolarity response mitogen-activated protein kinase pathway, and protein phosphatase 1, regulate activation of Msn2 in distinct ways in response to different stresses. Moreover, we find that bursts of nuclear localization elicit a more robust transcriptional response than does sustained nuclear localization. Using stochastic modeling, we reproduce in silico the responses of Msn2 to different stresses, and demonstrate that bursts of localization arise from noise in the signaling pathways amplified by the small number of Msn2 molecules in the cell. This noise imparts diverse behaviors to genetically identical cells, allowing cell populations to "hedge their bets" in responding to an uncertain future, and to balance growth and survival in an unpredictable environment.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Algoritmos , Núcleo Celular/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Redes Reguladoras de Genes , Glucose/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Cinética , Microscopia de Fluorescência , Modelos Biológicos , Modelos Genéticos , Mutação , Nitrogênio/farmacologia , Concentração Osmolar , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/fisiologia , Sorbitol/farmacologia , Estresse Fisiológico/fisiologia , Imagem com Lapso de Tempo , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
15.
Genetics ; 192(1): 73-105, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22964838

RESUMO

Availability of key nutrients, such as sugars, amino acids, and nitrogen compounds, dictates the developmental programs and the growth rates of yeast cells. A number of overlapping signaling networks--those centered on Ras/protein kinase A, AMP-activated kinase, and target of rapamycin complex I, for instance--inform cells on nutrient availability and influence the cells' transcriptional, translational, posttranslational, and metabolic profiles as well as their developmental decisions. Here I review our current understanding of the structures of the networks responsible for assessing the quantity and quality of carbon and nitrogen sources. I review how these signaling pathways impinge on transcriptional, metabolic, and developmental programs to optimize survival of cells under different environmental conditions. I highlight the profound knowledge we have gained on the structure of these signaling networks but also emphasize the limits of our current understanding of the dynamics of these signaling networks. Moreover, the conservation of these pathways has allowed us to extrapolate our finding with yeast to address issues of lifespan, cancer metabolism, and growth control in more complex organisms.


Assuntos
Saccharomyces/crescimento & desenvolvimento , Saccharomyces/metabolismo , Animais , Carbono/metabolismo , Humanos , Nitrogênio/metabolismo
16.
Mol Biol Cell ; 22(12): 2106-18, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21508315

RESUMO

Most promoters in yeast contain a nucleosome-depleted region (NDR), but the mechanisms by which NDRs are established and maintained in vivo are currently unclear. We have examined how genome-wide nucleosome placement is altered in the absence of two distinct types of nucleosome remodeling activity. In mutants of both SNF2, which encodes the ATPase component of the Swi/Snf remodeling complex, and ASF1, which encodes a histone chaperone, distinct sets of gene promoters carry excess nucleosomes in their NDRs relative to wild-type. In snf2 mutants, excess promoter nucleosomes correlate with reduced gene expression. In both mutants, the excess nucleosomes occupy DNA sequences that are energetically less favorable for nucleosome formation, indicating that intrinsic histone-DNA interactions are not sufficient for nucleosome positioning in vivo, and that Snf2 and Asf1 promote thermodynamic equilibration of nucleosomal arrays. Cells lacking SNF2 or ASF1 still accomplish the changes in promoter nucleosome structure associated with large-scale transcriptional reprogramming. However, chromatin reorganization in the mutants is reduced in extent compared to wild-type cells, even though transcriptional changes proceed normally. In summary, active remodeling is required for distributing nucleosomes to energetically favorable positions in vivo and for reorganizing chromatin in response to changes in transcriptional activity.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/genética , Mutação , RNA Mensageiro/análise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica , Ativação Transcricional
17.
Proc Natl Acad Sci U S A ; 106(47): 19928-33, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19901341

RESUMO

Genes required for ribosome biogenesis in yeast, referred to collectively as the Ribi regulon, are tightly regulated in coordination with nutrient availability and cellular growth rate. The promoters of a significant fraction of Ribi genes contain one or more copies of the RNA polymerases A and C (PAC) and/or ribosomal RNA-processing element (RRPE) motifs. Prompted by recent studies showing that the yeast protein Dot6 and its homolog Tod6 can bind to a PAC motif sequence in vitro and are required for efficient Ribi gene repression in response to heat shock, we have examined the role of Dot6 and Tod6 in nutrient control of Ribi gene expression in vivo. Our results indicate that PAC sites function as Dot6/Tod6-dependent repressor elements in vivo. Moreover, Dot6 and Tod6 mediate different nutrient signals, with Tod6 responsible for efficient repression of Ribi genes after inhibition of the nitrogen-sensitive TORC1 pathway and Dot6 responsible for repression after inhibition of the carbon-sensitive protein kinase A signaling pathway. Consistently, Dot6 and Tod6 are required for efficient repression of Ribi gene repression immediately after nutrient deprivation and for successful adaptation to nutrient limitation. Thus, these results establish Dot6/Tod6 as a direct link between nutrient availability, Ribi gene regulation, and growth control.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Repressoras/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Regulon , Proteínas Repressoras/genética , Ribossomos/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Inanição , Fatores de Transcrição/genética
18.
Mol Syst Biol ; 5: 245, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19225458

RESUMO

Addition of glucose to yeast cells increases their growth rate and results in a massive restructuring of their transcriptional output. We have used microarray analysis in conjunction with conditional mutations to obtain a systems view of the signaling network responsible for glucose-induced transcriptional changes. We found that several well-studied signaling pathways-such as Snf1 and Rgt-are responsible for specialized but limited responses to glucose. However, 90% of the glucose-induced changes can be recapitulated by the activation of protein kinase A (PKA) or by the induction of PKB (Sch9). Blocking signaling through Sch9 does not interfere with the glucose response, whereas blocking signaling through PKA does. We conclude that both Sch9 and PKA regulate a massive, nutrient-responsive transcriptional program promoting growth, but that they do so in response to different nutritional inputs. Moreover, activating PKA completely recapitulates the transcriptional growth program in the absence of any increase in growth or metabolism, demonstrating that activation of the growth program results solely from the cell's perception of its nutritional status.


Assuntos
Regulação Fúngica da Expressão Gênica , Glucose/fisiologia , Transdução de Sinais , Transcrição Gênica , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Leveduras
19.
PLoS Comput Biol ; 5(1): e1000257, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19119411

RESUMO

Maintaining balanced growth in a changing environment is a fundamental systems-level challenge for cellular physiology, particularly in microorganisms. While the complete set of regulatory and functional pathways supporting growth and cellular proliferation are not yet known, portions of them are well understood. In particular, cellular proliferation is governed by mechanisms that are highly conserved from unicellular to multicellular organisms, and the disruption of these processes in metazoans is a major factor in the development of cancer. In this paper, we develop statistical methodology to identify quantitative aspects of the regulatory mechanisms underlying cellular proliferation in Saccharomyces cerevisiae. We find that the expression levels of a small set of genes can be exploited to predict the instantaneous growth rate of any cellular culture with high accuracy. The predictions obtained in this fashion are robust to changing biological conditions, experimental methods, and technological platforms. The proposed model is also effective in predicting growth rates for the related yeast Saccharomyces bayanus and the highly diverged yeast Schizosaccharomyces pombe, suggesting that the underlying regulatory signature is conserved across a wide range of unicellular evolution. We investigate the biological significance of the gene expression signature that the predictions are based upon from multiple perspectives: by perturbing the regulatory network through the Ras/PKA pathway, observing strong upregulation of growth rate even in the absence of appropriate nutrients, and discovering putative transcription factor binding sites, observing enrichment in growth-correlated genes. More broadly, the proposed methodology enables biological insights about growth at an instantaneous time scale, inaccessible by direct experimental methods. Data and tools enabling others to apply our methods are available at http://function.princeton.edu/growthrate.


Assuntos
Algoritmos , Perfilação da Expressão Gênica/métodos , Modelos Biológicos , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proliferação de Células , Simulação por Computador
20.
Annu Rev Genet ; 42: 27-81, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18303986

RESUMO

Yeast cells sense the amount and quality of external nutrients through multiple interconnected signaling networks, which allow them to adjust their metabolism, transcriptional profile and developmental program to adapt readily and appropriately to changing nutritional states. We present our current understanding of the nutritional sensing networks yeast cells rely on for perceiving the nutritional landscape, with particular emphasis on those sensitive to carbon and nitrogen sources. We describe the means by which these networks inform the cell's decision among the different developmental programs available to them-growth, quiescence, filamentous development, or meiosis/sporulation. We conclude that the highly interconnected signaling networks provide the cell with a highly nuanced view of the environment and that the cell can interpret that information through a sophisticated calculus to achieve optimum responses to any nutritional condition.


Assuntos
Saccharomyces/metabolismo , Aminoácidos/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA , Genes Fúngicos , Glucose/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Nitrogênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces/citologia , Saccharomyces/genética , Saccharomyces/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Estresse Fisiológico , Transativadores/metabolismo , Fatores de Transcrição , Transcrição Gênica , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA