Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 8(4): e1002464, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496636

RESUMO

High-throughput RNA sequencing enables quantification of transcripts (both known and novel), exon/exon junctions and fusions of exons from different genes. Discovery of gene fusions-particularly those expressed with low abundance- is a challenge with short- and medium-length sequencing reads. To address this challenge, we implemented an RNA-Seq mapping pipeline within the LifeScope software. We introduced new features including filter and junction mapping, annotation-aided pairing rescue and accurate mapping quality values. We combined this pipeline with a Suffix Array Spliced Read (SASR) aligner to detect chimeric transcripts. Performing paired-end RNA-Seq of the breast cancer cell line MCF-7 using the SOLiD system, we called 40 gene fusions among over 120,000 splicing junctions. We validated 36 of these 40 fusions with TaqMan assays, of which 25 were expressed in MCF-7 but not the Human Brain Reference. An intra-chromosomal gene fusion involving the estrogen receptor alpha gene ESR1, and another involving the RPS6KB1 (Ribosomal protein S6 kinase beta-1) were recurrently expressed in a number of breast tumor cell lines and a clinical tumor sample.


Assuntos
Algoritmos , Fusão Gênica/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência de RNA/métodos , Software , Sequência de Bases , Dados de Sequência Molecular
2.
J Biol Chem ; 278(43): 42668-78, 2003 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-12909639

RESUMO

Together, RecQ helicase and topoisomerase III (Topo III) of Escherichia coli comprise a potent DNA strand passage activity that can catenate covalently closed DNA (Harmon, F. G., DiGate, R. J., and Kowalczykowski, S. C. (1999) Mol. Cell 3, 611-620). Here we directly assessed the structure of the catenated DNA species formed by RecQ helicase and Topo III using atomic force microscopy. The images show complex catenated DNA species involving crossovers between multiple double-stranded DNA molecules that are consistent with full catenanes. E. coli single-stranded DNA-binding protein significantly stimulated both the topoisomerase activity of Topo III alone and the DNA strand passage activity of RecQ helicase and Topo III. Titration data suggest that an intermediate of the RecQ helicase unwinding process, perhaps a RecQ helicase-DNA fork, is the target for Topo III action. Catenated DNA is the predominant product under conditions of molecular crowding; however, we also discovered that RecQ helicase and single-stranded DNA-binding protein greatly stimulated the intramolecular strand passage ("supercoiling") activity of Topo III, as revealed by changes in the linking number of uncatenated DNA. Together our results demonstrate that RecQ helicase and Topo III function together to comprise a potent and concerted single-strand DNA passage activity that can mediate both catenation-decatenation processes and changes in DNA topology.


Assuntos
Adenosina Trifosfatases/fisiologia , DNA Helicases/fisiologia , DNA Topoisomerases Tipo I/fisiologia , DNA Catenado/biossíntese , DNA Catenado/química , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Escherichia coli/fisiologia , Cinética , Microscopia de Força Atômica , Conformação de Ácido Nucleico , Polietilenoglicóis/farmacologia , RecQ Helicases , Titulometria
3.
J Biol Chem ; 278(4): 2278-85, 2003 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-12427742

RESUMO

In Escherichia coli the RecA protein plays a pivotal role in homologous recombination, DNA repair, and SOS repair and mutagenesis. A gene designated recX (or oraA) is present directly downstream of recA in E. coli; however, the function of RecX is unknown. In this work we demonstrated interaction of RecX and RecA in a yeast two-hybrid assay. In vitro, substoichiometric amounts of RecX strongly inhibited both RecA-mediated DNA strand exchange and RecA ATPase activity. In vivo, we showed that recX is under control of the LexA repressor and is up-regulated in response to DNA damage. A loss-of-function mutation in recX resulted in decreased resistance to UV irradiation; however, overexpression of RecX in trans resulted in a greater decrease in UV resistance. Overexpression of RecX inhibited induction of two din (damage-inducible) genes and cleavage of the UmuD and LexA repressor proteins; however, recX inactivation had no effect on any of these processes. Cells overexpressing RecX showed decreased levels of P1 transduction, whereas recX mutation had no effect on P1 transduction frequency. Our combined in vitro and in vivo data indicate that RecX can inhibit both RecA recombinase and coprotease activities.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Recombinases Rec A/metabolismo , Trifosfato de Adenosina/metabolismo , Western Blotting , DNA/metabolismo , Dano ao DNA , DNA Polimerase Dirigida por DNA , Relação Dose-Resposta à Radiação , Proteínas de Escherichia coli/metabolismo , Hidrólise , Técnicas In Vitro , Plasmídeos/metabolismo , Ligação Proteica , Recombinação Genética , Serina Endopeptidases/metabolismo , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido , Raios Ultravioleta , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA