Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(11): 4869-4879, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37874935

RESUMO

Fundamental understanding of the structure and assembly of nanoscale building blocks is crucial for the development of novel biomaterials with defined architectures and function. However, accessing self-consistent structural information across multiple length scales is challenging. This limits opportunities to exploit atomic scale interactions to achieve emergent macroscale properties. In this work we present an integrative small- and wide-angle neutron scattering approach coupled with computational modeling to reveal the multiscale structure of hierarchically self-assembled ß hairpins in aqueous solution across 4 orders of magnitude in length scale from 0.1 Å to 300 nm. Our results demonstrate the power of this self-consistent cross-length scale approach and allows us to model both the large-scale self-assembly and small-scale hairpin hydration of the model ß hairpin CLN025. Using this combination of techniques, we map the hydrophobic/hydrophilic character of this model self-assembled biomolecular surface with atomic resolution. These results have important implications for the multiscale investigation of aqueous peptides and proteins, for the prediction of ligand binding and molecular associations for drug design, and for understanding the self-assembly of peptides and proteins for functional biomaterials.


Assuntos
Materiais Biocompatíveis , Peptídeos , Peptídeos/química , Interações Hidrofóbicas e Hidrofílicas
2.
Soft Matter ; 19(17): 3167-3178, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37067782

RESUMO

Folded protein hydrogels are prime candidates as tuneable biomaterials but it is unclear to what extent their mechanical properties have mesoscopic, as opposed to molecular origins. To address this, we probe hydrogels inspired by the muscle protein titin and engineered to the polyprotein I275, using a multimodal rheology approach. Across multiple protocols, the hydrogels consistently exhibit power-law viscoelasticity in the linear viscoelastic regime with an exponent ß = 0.03, suggesting a dense fractal meso-structure, with predicted fractal dimension df = 2.48. In the nonlinear viscoelastic regime, the hydrogel undergoes stiffening and energy dissipation, indicating simultaneous alignment and unfolding of the folded proteins on the nanoscale. Remarkably, this behaviour is highly reversible, as the value of ß, df and the viscoelastic moduli return to their equilibrium value, even after multiple cycles of deformation. This highlights a previously unrevealed diversity of viscoelastic properties that originate on both at the nanoscale and the mesoscopic scale, providing powerful opportunities for engineering novel biomaterials.


Assuntos
Hidrogéis , Proteínas Musculares , Hidrogéis/química , Materiais Biocompatíveis/química , Viscosidade , Reologia
3.
Nat Commun ; 13(1): 4986, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008493

RESUMO

Alpha-synuclein (αSyn) is a protein involved in neurodegenerative disorders including Parkinson's disease. Amyloid formation of αSyn can be modulated by the 'P1 region' (residues 36-42). Here, mutational studies of P1 reveal that Y39A and S42A extend the lag-phase of αSyn amyloid formation in vitro and rescue amyloid-associated cytotoxicity in C. elegans. Additionally, L38I αSyn forms amyloid fibrils more rapidly than WT, L38A has no effect, but L38M does not form amyloid fibrils in vitro and protects from proteotoxicity. Swapping the sequence of the two residues that differ in the P1 region of the paralogue γSyn to those of αSyn did not enhance fibril formation for γSyn. Peptide binding experiments using NMR showed that P1 synergises with residues in the NAC and C-terminal regions to initiate aggregation. The remarkable specificity of the interactions that control αSyn amyloid formation, identifies this region as a potential target for therapeutics, despite their weak and transient nature.


Assuntos
Amiloidose , Doença de Parkinson , Amiloide/metabolismo , Proteínas Amiloidogênicas , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
4.
Angew Chem Int Ed Engl ; 57(51): 16688-16692, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30393918

RESUMO

Analysing protein complexes by chemical crosslinking-mass spectrometry (XL-MS) is limited by the side-chain reactivities and sizes of available crosslinkers, their slow reaction rates, and difficulties in crosslink enrichment, especially for rare, transient or dynamic complexes. Here we describe two new XL reagents that incorporate a methanethiosulfonate (MTS) group to label a reactive cysteine introduced into the bait protein, and a residue-unbiased diazirine-based photoactivatable XL group to trap its interacting partner(s). Reductive removal of the bait transfers a thiol-containing fragment of the crosslinking reagent onto the target that can be alkylated and located by MS sequencing and exploited for enrichment, enabling the detection of low abundance crosslinks. Using these reagents and a bespoke UV LED irradiation platform, we show that maximum crosslinking yield is achieved within 10 seconds. The utility of this "tag and transfer" approach is demonstrated using a well-defined peptide/protein regulatory interaction (BID80-102 /MCL-1), and the dynamic interaction interface of a chaperone/substrate complex (Skp/OmpA).


Assuntos
Reagentes de Ligações Cruzadas/química , Cisteína/química , Mesilatos/química , Mapas de Interação de Proteínas , Proteínas/química , Espectrometria de Massas , Estrutura Molecular , Processos Fotoquímicos
5.
Protein Sci ; 27(7): 1205-1217, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29417650

RESUMO

Protein aggregation is linked with the onset of several neurodegenerative disorders, including Parkinson's disease (PD), which is associated with the aggregation of α-synuclein (αSyn). The structural mechanistic details of protein aggregation, including the nature of the earliest protein-protein interactions, remain elusive. In this study, we have used single molecule force spectroscopy (SMFS) to probe the first dimerization events of the central aggregation-prone region of αSyn (residues 71-82) that may initiate aggregation. This region has been shown to be necessary for the aggregation of full length αSyn and is capable of forming amyloid fibrils in isolation. We demonstrate that the interaction of αSyn71-82 peptides can be studied using SMFS when inserted into a loop of protein L, a mechanically strong and soluble scaffold protein that acts as a display system for SMFS studies. The corresponding fragment of the homolog protein γ-synuclein (γSyn), which has a lower aggregation propensity, has also been studied here. The results from SMFS, together with native mass spectrometry and aggregation assays, demonstrate that the dimerization propensity of γSyn71-82 is lower than that of αSyn71-82 , but that a mixed αSyn71-82 : γSyn71-82 dimer forms with a similar propensity to the αSyn71-82 homodimer, slowing amyloid formation. This work demonstrates the utility of a novel display method for SMFS studies of aggregation-prone peptides, which would otherwise be difficult to study.


Assuntos
Doença de Parkinson/metabolismo , Imagem Individual de Molécula/métodos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Cristalografia por Raios X , Humanos , Espectrometria de Massas , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Agregados Proteicos , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína
6.
J Mol Biol ; 429(23): 3776-3792, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-28919234

RESUMO

The biogenesis of outer-membrane proteins (OMPs) in gram-negative bacteria involves delivery by periplasmic chaperones to the ß-barrel assembly machinery (BAM), which catalyzes OMP insertion into the outer membrane. Here, we examine the effects of membrane thickness, the Escherichia coli periplasmic chaperones Skp and SurA, and BamA, the central subunit of the BAM complex, on the folding kinetics of a model OMP (tOmpA) using fluorescence spectroscopy, native mass spectrometry, and molecular dynamics simulations. We show that prefolded BamA promotes the release of tOmpA from Skp despite the nM affinity of the Skp:tOmpA complex. This activity is located in the BamA ß-barrel domain, but is greater when full-length BamA is present, indicating that both the ß-barrel and polypeptide transport-associated (POTRA) domains are required for maximal activity. By contrast, SurA is unable to release tOmpA from Skp, providing direct evidence against a sequential chaperone model. By varying lipid acyl chain length in synthetic liposomes we show that BamA has a greater catalytic effect on tOmpA folding in thicker bilayers, suggesting that BAM catalysis involves lowering of the kinetic barrier imposed by the hydrophobic thickness of the membrane. Consistent with this, molecular dynamics simulations reveal that increases in membrane thinning/disorder by the transmembrane domain of BamA is greatest in thicker bilayers. Finally, we demonstrate that cross-linking of the BamA barrel does not affect tOmpA folding kinetics in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes, suggesting that lateral gating of the BamA barrel and/or hybrid barrel formation is not required, at least for the assembly of a small 8-stranded OMP in vitro.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Membrana Celular/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo , Periplasma/metabolismo , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/metabolismo , Biocatálise , Membrana Celular/metabolismo , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Interações Hidrofóbicas e Hidrofílicas , Cinética , Lipossomos/metabolismo , Simulação de Dinâmica Molecular
7.
Proc Natl Acad Sci U S A ; 114(18): 4673-4678, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28416674

RESUMO

Relative to other extrinsic factors, the effects of hydrodynamic flow fields on protein stability and conformation remain poorly understood. Flow-induced protein remodeling and/or aggregation is observed both in Nature and during the large-scale industrial manufacture of proteins. Despite its ubiquity, the relationships between the type and magnitude of hydrodynamic flow, a protein's structure and stability, and the resultant aggregation propensity are unclear. Here, we assess the effects of a defined and quantified flow field dominated by extensional flow on the aggregation of BSA, ß2-microglobulin (ß2m), granulocyte colony stimulating factor (G-CSF), and three monoclonal antibodies (mAbs). We show that the device induces protein aggregation after exposure to an extensional flow field for 0.36-1.8 ms, at concentrations as low as 0.5 mg mL-1 In addition, we reveal that the extent of aggregation depends on the applied strain rate and the concentration, structural scaffold, and sequence of the protein. Finally we demonstrate the in situ labeling of a buried cysteine residue in BSA during extensional stress. Together, these data indicate that an extensional flow readily unfolds thermodynamically and kinetically stable proteins, exposing previously sequestered sequences whose aggregation propensity determines the probability and extent of aggregation.


Assuntos
Anticorpos Monoclonais/química , Fator Estimulador de Colônias de Granulócitos/química , Hidrodinâmica , Agregados Proteicos , Soroalbumina Bovina/química , Microglobulina beta-2/química , Animais , Bovinos , Humanos , Cinética , Estabilidade Proteica
8.
Biomacromolecules ; 18(2): 636-646, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28006103

RESUMO

The native states of proteins generally have stable well-defined folded structures endowing these biomolecules with specific functionality and molecular recognition abilities. Here we explore the potential of using folded globular polyproteins as building blocks for hydrogels. Photochemically cross-linked hydrogels were produced from polyproteins containing either five domains of I27 ((I27)5), protein L ((pL)5), or a 1:1 blend of these proteins. SAXS analysis showed that (I27)5 exists as a single rod-like structure, while (pL)5 shows signatures of self-aggregation in solution. SANS measurements showed that both polyprotein hydrogels have a similar nanoscopic structure, with protein L hydrogels being formed from smaller and more compact clusters. The polyprotein hydrogels showed small energy dissipation in a load/unload cycle, which significantly increased when the hydrogels were formed in the unfolded state. This study demonstrates the use of folded proteins as building blocks in hydrogels, and highlights the potential versatility that can be offered in tuning the mechanical, structural, and functional properties of polyproteins.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/química , Poliproteínas/química , Engenharia de Proteínas , Humanos , Reologia , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Nat Chem Biol ; 12(2): 94-101, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26656088

RESUMO

Protein aggregation underlies an array of human diseases, yet only one small-molecule therapeutic targeting this process has been successfully developed to date. Here, we introduce an in vivo system, based on a ß-lactamase tripartite fusion construct, that is capable of identifying aggregation-prone sequences in the periplasm of Escherichia coli and inhibitors that prevent their aberrant self-assembly. We demonstrate the power of the system using a range of proteins, from small unstructured peptides (islet amyloid polypeptide and amyloid ß) to larger, folded immunoglobulin domains. Configured in a 48-well format, the split ß-lactamase sensor readily differentiates between aggregation-prone and soluble sequences. Performing the assay in the presence of 109 compounds enabled a rank ordering of inhibition and revealed a new inhibitor of islet amyloid polypeptide aggregation. This platform can be applied to both amyloidogenic and other aggregation-prone systems, independent of sequence or size, and can identify small molecules or other factors able to ameliorate or inhibit protein aggregation.


Assuntos
Bioensaio/métodos , Agregação Patológica de Proteínas , Peptídeos beta-Amiloides/metabolismo , Western Blotting , Curcumina/farmacologia , Dopamina/química , Dopamina/farmacologia , Humanos , Microscopia Eletrônica de Transmissão , Ligação Proteica/efeitos dos fármacos , Espectrometria de Massas por Ionização por Electrospray , beta-Lactamases/química
10.
ACS Nano ; 9(9): 8811-21, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26284289

RESUMO

Single-molecule force spectroscopy by atomic force microscopy exploits the use of multimeric protein constructs, namely, polyproteins, to decrease the impact of nonspecific interactions, to improve data accumulation, and to allow the accommodation of benchmarking reference domains within the construct. However, methods to generate such constructs are either time- and labor-intensive or lack control over the length or the domain sequence of the obtained construct. Here, we describe an approach that addresses both of these shortcomings that uses Gibson assembly (GA) to generate a defined recombinant polyprotein rapidly using linker sequences. To demonstrate the feasibility of this approach, we used GA to make a polyprotein composed of alternating domains of I27 and TmCsp, (I27-TmCsp)3-I27)(GA), and showed the mechanical fingerprint, mechanical strength, and pulling speed dependence are the same as an analogous polyprotein constructed using the classical approach. After this benchmarking, we exploited this approach to facilitiate the mechanical characterization of POTRA domain 2 of BamA from E. coli (EcPOTRA2) by assembling the polyprotein (I27-EcPOTRA2)3-I27(GA). We show that, as predicted from the α + ß topology, EcPOTRA2 domains are mechanically robust over a wide range of pulling speeds. Furthermore, we identify a clear correlation between mechanical robustness and brittleness for a range of other α + ß proteins that contain the structural feature of proximal terminal ß-strands in parallel geometry. We thus demonstrate that the GA approach is a powerful tool, as it circumvents the usual time- and labor-intensive polyprotein production process and allows for rapid production of new constructs for single-molecule studies. As shown for EcPOTRA2, this approach allows the exploration of the mechanical properties of a greater number of proteins and their variants. This improves our understanding of the relationship between structure and mechanical strength, increasing our ability to design proteins with tailored mechanical properties.


Assuntos
Peptídeos/química , Poliproteínas/química , Multimerização Proteica , Escherichia coli/química , Microscopia de Força Atômica , Poliproteínas/ultraestrutura , Estrutura Terciária de Proteína
11.
Artigo em Inglês | MEDLINE | ID: mdl-25679645

RESUMO

Single-molecule force spectroscopy using an atomic force microscope (AFM) can be used to measure the average unfolding force of proteins in a constant velocity experiment. In combination with Monte Carlo simulations and through the application of the Zhurkov-Bell model, information about the parameters describing the underlying unfolding energy landscape of the protein can be obtained. Using this approach, we have completed protein unfolding experiments on the polyprotein (I27)(5) over a range of pulling velocities. In agreement with previous work, we find that the observed number of protein unfolding events observed in each approach-retract cycle varies between one and five, due to the nature of the interactions between the polyprotein, the AFM tip, and the substrate, and there is an unequal unfolding probability distribution. We have developed a Monte Carlo simulation that incorporates the impact of this unequal unfolding probability distribution on the median unfolding force and the calculation of the protein unfolding energy landscape parameters. These results show that while there is a significant, unequal unfolding probability distribution, the unfolding energy landscape parameters obtained from use of the Zhurkov-Bell model are not greatly affected. This result is important because it demonstrates that the minimum acceptance criteria typically used in force extension experiments are justified and do not skew the calculation of the unfolding energy landscape parameters. We further validate this approach by determining the error in the energy landscape parameters for two extreme cases, and we provide suggestions for methods that can be employed to increase the level of accuracy in single-molecule experiments using polyproteins.


Assuntos
Método de Monte Carlo , Desdobramento de Proteína , Proteínas/química , Probabilidade , Termodinâmica
12.
J Phys Chem B ; 117(6): 1819-26, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23293964

RESUMO

Single-molecule force spectroscopy has emerged as a powerful approach to examine the stability and dynamics of single proteins. We have completed force extension experiments on the small cold shock protein B from Thermotoga maritima, using a specially constructed chimeric polyprotein. The protein's simple topology, which is distinct from the mechanically well-characterized ß-grasp and immunoglobulin (Ig)-like folds, in addition to the wide range of structural homologues resulting from its ancient origin, provides an attractive model protein for single-molecule force spectroscopy studies. We have determined that the protein has mechanical stability, unfolding at greater than 70 pN at a pulling velocity of 100 nm s(-1). We reveal features of the unfolding energy landscape by measuring the dependence of the mechanical stability on pulling velocity, in combination with Monte Carlo simulations. We show that the cold shock protein has mechanically robust, yet malleable, features that may be important in providing the protein with stability and flexibility to function over a range of environmental conditions. These results provide insights into the relationship between the secondary structure and topology of a protein and its mechanical strength. This lays the foundation for the investigation of the effects of changes in environmental conditions on the mechanical and dynamic properties of cold shock proteins.


Assuntos
Proteínas e Peptídeos de Choque Frio/química , Proteínas e Peptídeos de Choque Frio/genética , Proteínas e Peptídeos de Choque Frio/metabolismo , Escherichia coli/metabolismo , Microscopia de Força Atômica , Método de Monte Carlo , Desdobramento de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometria de Fluorescência , Termodinâmica , Thermotoga maritima/metabolismo
13.
J Mol Biol ; 398(1): 132-45, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20211187

RESUMO

Under appropriate conditions, the four-helical Im7 (immunity protein 7) folds from an ensemble of unfolded conformers to a highly compact native state via an on-pathway intermediate. Here, we investigate the unfolded, intermediate, and native states populated during folding using diffusion single-pair fluorescence resonance energy transfer by measuring the efficiency of energy transfer (or proximity or P ratio) between pairs of fluorophores introduced into the side chains of cysteine residues placed in the center of helices 1 and 4, 1 and 3, or 2 and 4. We show that while the native states of each variant give rise to a single narrow distribution with high P values, the distributions of the intermediates trapped at equilibrium (denoted I(eqm)) are fitted by two Gaussian distributions. Modulation of the folding conditions from those that stabilize the intermediate to those that destabilize the intermediate enabled the distribution of lower P value to be assigned to the population of the unfolded ensemble in equilibrium with the intermediate state. The reduced stability of the I(eqm) variants allowed analysis of the effect of denaturant concentration on the compaction and breadth of the unfolded state ensemble to be quantified from 0 to 6 M urea. Significant compaction is observed as the concentration of urea is decreased in both the presence and absence of sodium sulfate, as previously reported for a variety of proteins. In the presence of Na(2)SO(4) in 0 M urea, the P value of the unfolded state ensemble approaches that of the native state. Concurrent with compaction, the ensemble displays increased peak width of P values, possibly reflecting a reduction in the rate of conformational exchange among iso-energetic unfolded, but compact conformations. The results provide new insights into the initial stages of folding of Im7 and suggest that the unfolded state is highly conformationally constrained at the outset of folding.


Assuntos
Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Dobramento de Proteína , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Simulação por Computador , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Cinética , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Estrutura Secundária de Proteína , Ureia/farmacologia
14.
Faraday Discuss ; 139: 35-51; discussion 105-28, 419-20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19048989

RESUMO

Experiments that measure the viscoelasticity of single molecules from the Brownian fluctuations of an atomic force microscope (AFM) have provided a new window onto their internal dynamics in an underlying conformational landscape. Here we develop and apply these methods to examine the internal friction of unfolded polypeptide chains at high stretch. The results reveal a power law dependence of internal friction with tension (exponent 1.3 +/- 0.5) and a relaxation time approximately independent of force. To explain these results we develop a frictional worm-like chain (FWLC) model based on the Rayleigh dissipation function of a stiff chain with dynamical resistance to local bending. We analyse the dissipation rate integrated over the chain length by its Fourier components to calculate an effective tension-dependent friction constant for the end-to-end vector of the chain. The result is an internal friction that increases as a power law with tension with an exponent 3/2, consistent with experiment. Extracting the intrinsic bending friction constant of the chain it is found to be approximately 7 orders of magnitude greater than expected from solvent friction alone; a possible explanation we offer is that the underlying energy landscape for bending amino acids and/or peptide bond is rough, consistent with recent results on both proteins and polysaccharides.


Assuntos
Peptídeos/química , Elasticidade , Fricção , Viscosidade
15.
Philos Trans A Math Phys Eng Sci ; 361(1805): 713-28; discussion 728-30, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12871620

RESUMO

Understanding the mechanisms of protein folding is a major challenge that is being addressed effectively by collaboration between researchers in the physical and life sciences. Recently, it has become possible to mechanically unfold proteins by pulling on their two termini using local force probes such as the atomic force microscope. Here, we present data from experiments in which synthetic protein polymers designed to mimic naturally occurring polyproteins have been mechanically unfolded. For many years protein folding dynamics have been studied using chemical denaturation, and we therefore firstly discuss our mechanical unfolding data in the context of such experiments and show that the two unfolding mechanisms are not the same, at least for the proteins studied here. We also report unexpected observations that indicate a history effect in the observed unfolding forces of polymeric proteins and explain this in terms of the changing number of domains remaining to unfold and the increasing compliance of the lengthening unstructured polypeptide chain produced each time a domain unfolds.


Assuntos
Desnaturação Proteica , Dobramento de Proteína , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Método de Monte Carlo , Estresse Mecânico , Temperatura
16.
Protein Sci ; 11(12): 2759-65, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12441375

RESUMO

The mechanical resistance of a folded domain in a polyprotein of five mutant I27 domains (C47S, C63S I27)(5)is shown to depend on the unfolding history of the protein. This observation can be understood on the basis of competition between two effects, that of the changing number of domains attempting to unfold, and the progressive increase in the compliance of the polyprotein as domains unfold. We present Monte Carlo simulations that show the effect and experimental data that verify these observations. The results are confirmed using an analytical model based on transition state theory. The model and simulations also predict that the mechanical resistance of a domain depends on the stiffness of the surrounding scaffold that holds the domain in vivo, and on the length of the unfolded domain. Together, these additional factors that influence the mechanical resistance of proteins have important consequences for our understanding of natural proteins that have evolved to withstand force.


Assuntos
Dobramento de Proteína , Proteínas/química , Simulação por Computador , Modelos Moleculares , Método de Monte Carlo , Estrutura Terciária de Proteína , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA