Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Immunol ; 15: 1328401, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481989

RESUMO

Background: Ascaris lumbricoides cystatin (Al-CPI) prevents the development of allergic airway inflammation and dextran-induced colitis in mice models. It has been suggested that helminth-derived cystatins inhibit cathepsins in dendritic cells (DC), but their immunomodulatory mechanisms are unclear. We aimed to analyze the transcriptional profile of human monocyte-derived DC (moDC) upon stimulation with Al-CPI to elucidate target genes and pathways of parasite immunomodulation. Methods: moDC were generated from peripheral blood monocytes from six healthy human donors of Denmark, stimulated with 1 µM of Al-CPI, and cultured for 5 hours at 37°C. RNA was sequenced using TrueSeq RNA libraries and the NextSeq 550 v2.5 (75 cycles) sequencing kit (Illumina, Inc). After QC, reads were aligned to the human GRCh38 genome using Spliced Transcripts Alignment to a Reference (STAR) software. Differential expression was calculated by DESEq2 and expressed in fold changes (FC). Cell surface markers and cytokine production by moDC were evaluated by flow cytometry. Results: Compared to unstimulated cells, Al-CPI stimulated moDC showed differential expression of 444 transcripts (|FC| ≥1.3). The top significant differences were in Kruppel-like factor 10 (KLF10, FC 3.3, PBH = 3 x 10-136), palladin (FC 2, PBH = 3 x 10-41), and the low-density lipoprotein receptor (LDLR, FC 2.6, PBH = 5 x 10-41). Upregulated genes were enriched in regulation of cholesterol biosynthesis by sterol regulatory element-binding proteins (SREBP) signaling pathways and immune pathways. Several genes in the cholesterol biosynthetic pathway showed significantly increased expression upon Al-CPI stimulation, even in the presence of lipopolysaccharide (LPS). Regarding the pathway of negative regulation of immune response, we found a significant decrease in the cell surface expression of CD86, HLA-DR, and PD-L1 upon stimulation with 1 µM Al-CPI. Conclusion: Al-CPI modifies the transcriptome of moDC, increasing several transcripts encoding enzymes involved in cholesterol biosynthesis and SREBP signaling. Moreover, Al-CPI target several transcripts in the TNF-alpha signaling pathway influencing cytokine release by moDC. In addition, mRNA levels of genes encoding KLF10 and other members of the TGF beta and the IL-10 families were also modified by Al-CPI stimulation. The regulation of the mevalonate pathway and cholesterol biosynthesis suggests new mechanisms involved in DC responses to helminth immunomodulatory molecules.


Assuntos
Cistatinas , Monócitos , Humanos , Animais , Camundongos , Ascaris lumbricoides , Ácido Mevalônico/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Inflamação/metabolismo , Imunidade , Células Dendríticas , RNA/metabolismo
2.
Biomedicines ; 11(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36830832

RESUMO

Cancer is one of the main causes of human death globally and novel chemotherapeutics are desperately required. As a simple selenium oxide, selenite is a very promising chemotherapeutic because of pronounced its dose-dependent tumor-specific cytotoxicity. We previously published a first-in-man systematic phase I clinical trial in patients with cancer (from IV to end-stage) (the SECAR trial) showing that selenite is safe and tolerable with an unexpectable high maximum tolerated dose (MTD) and short half-life. In the present study, we analyzed the selenium species in plasma samples, from the patients participating in the SECAR trial and from various time points and dose cohorts using LC-ICP-MS. In conclusion, selenite, selenosugars, and 1-2 unidentified peaks that did not correspond to any standard, herein denoted ui-selenium, were detected in the plasma. However, trimethylated selenium (trimethylselenonoium) was not detected. The unidentified ui-selenium was eluting close to the selenium-containing amino acids (selenomethionine and selenocysteine) but was not part of a protein fraction. Our data demonstrate that the major metabolite detected was selenosugar. Furthermore, the identification of selenite even long after the administration is remarkable and unexpected. The kinetic analysis did not support that dosing per the body surface area would reduce interindividual variability of the systemic exposure in terms of trough concentrations.

3.
Anticancer Res ; 42(6): 2827-2833, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35641253

RESUMO

BACKGROUND: Anastomotic leakage is the most serious and unwelcome complication in rectal surgery. It has a great impact on postoperative morbidity and mortality. In this pilot study, changes of mRNA expression in blood were analyzed in an animal model designed to imitate anastomotic leakage. MATERIALS AND METHODS: Twelve pigs were randomized into two groups: A sham-operated control group and an experimental group in which iatrogenic rectal perforation was performed. The changes in the mRNA expression at 4 hours after creating the perforation were studied. Microarray analysis was performed using Gene Chip whole porcine genome array. mRNA expression of 19,124 genes was investigated. RESULTS: Significantly increased levels of genes with a fold change greater than 2 were found, including 276 coding for unknown proteins and 48 coding for known proteins. Eleven of those which coded for known proteins were up-regulated with a fold change >4. CONCLUSION: Eleven known genes were highly up-regulated after rectal perforation. These genes were mainly involved in inflammatory response, intracellular signaling and cell membrane regulation. Their corresponding proteins might potentially be clinical biomarkers of anastomotic leakage and should be evaluated in further clinical studies.


Assuntos
Fístula Anastomótica , Neoplasias Retais , Animais , Fístula Anastomótica/etiologia , Análise de Sequência com Séries de Oligonucleotídeos , Projetos Piloto , Neoplasias Retais/cirurgia , RNA Mensageiro/genética , Suínos
4.
J Tissue Eng Regen Med ; 12(2): e720-e726, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-27863127

RESUMO

Quality control studies addressing gene expression changes and genetic stability are of vital importance in regenerative medicine. In order to rule out that in vitro expansion gives rise to gene expression changes that could favour oncogenic events, this study applied a total human gene expression chip (Affymetrix®) and bioinformatics analysis using the Ingenuity web-based application in combination with an analysis of chromosomal copy number variations using array comparative genomic hybridization. Urothelial cells presented a general repression of genes required for cell cycle progression and upregulation of growth-inhibitory genes, as well as a decrease in deoxyribose nucleic acid replication after long-term culture. Molecules were identified with a potential to regulate human urothelial cell senescence, such as the micro-ribonucleic acid Let-7. Human urothelial cells did not acquire copy number variations after long-term culture and the cells had a normal expression of oncogenes and tumor suppressor genes. Altogether, both gene expression studies and array comparative genomic hybridization indicated a good quality of in vitro propagated cells. For tissue engineering purposes, these analyses could be used for quality control assessments before transplantation back to the patient. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Instabilidade Genômica , Urotélio/metabolismo , Células 3T3 , Animais , Técnicas de Cultura de Células , Hibridização Genômica Comparativa , Biologia Computacional , Regulação da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Reprodutibilidade dos Testes , Neoplasias da Bexiga Urinária/genética
5.
Oncotarget ; 8(3): 4530-4542, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-27965463

RESUMO

Ameloblastoma of the jaws remains the top difficult to treat odontogenic tumour and has a high recurrence rate. New evidence suggests that non-coding RNAs (ncRNAs) play a critical role in tumourgenesis and prognosis of cancer. However, ameloblastoma ncRNA expression data is lacking. Here we present the first report of ameloblastoma ncRNA signatures. A total of 95 ameloblastoma cases and a global array transcriptome technology covering > 285.000 full-length transcripts were used in this two-step analysis. The analysis first identified in a test cohort 31 upregulated ameloblastoma-associated ncRNAs accompanied by signalling pathways of cancer, spliceosome, mRNA surveillance and Wnt. Further validation in an independent cohort points out the long non-coding (lncRNAs) and small nucleolar RNA (snoRNAs): LINC340, SNORD116-25, SNORA11, SNORA21, SNORA47 and SNORA65 as a distinct ncRNA signature of ameloblastoma. Importantly, the presence of these ncRNAs was independent of BRAF-V600E and SMO-L412F mutations, histology type or tumour location, but was positively correlated with the tumour size. Taken together, this study shows a systematic investigation of ncRNA expression of ameloblastoma, and illuminates new diagnostic and therapeutic targets for this invasive odontogenic tumour.


Assuntos
Ameloblastoma/genética , Perfilação da Expressão Gênica/métodos , Neoplasias Maxilomandibulares/genética , RNA não Traduzido/genética , Adulto , Idoso , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Transdução de Sinais
6.
Oncoimmunology ; 5(12): e1232222, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28123870

RESUMO

Removal of immuno-suppression has been reported to enhance antitumor immunity primed by checkpoint inhibitors. Although PD-1 blockade failed to control tumor growth in a transgenic murine neuroblastoma model, concurrent inhibition of colony stimulating factor 1 receptor (CSF-1R) by BLZ945 reprogrammed suppressive myeloid cells and significantly enhanced therapeutic effects. Microarray analysis of tumor tissues identified a significant increase of T-cell infiltration guided by myeloid cell-derived chemokines CXCL9, 10, and 11. Blocking the responsible chemokine receptor CXCR3 hampered T-cell infiltration and reduced antitumor efficacy of the combination therapy. Multivariate analysis of 59 immune-cell parameters in tumors and spleens detected the correlation between PD-L1-expressing myeloid cells and tumor burden. In vitro, anti-PD-1 antibody Nivolumab in combination with BLZ945 increased the activation of primary human T and NK cells. Importantly, we revealed a previously uncharacterized pathway, in which T cells secreted M-CSF upon PD-1 blockade, leading to enhanced suppressive capacity of monocytes by upregulation of PD-L1 and purinergic enzymes. In multiple datasets of neuroblastoma patients, gene expression of CD73 correlated strongly with myeloid cell markers CD163 and CSF-1R in neuroblastoma tumors, and associated with worse survival in high-risk patients. Altogether, our data reveal the dual role of activated T cells on myeloid cell functions and provide a rationale for the combination therapy of anti-PD-1 antibody with CSF-1R inhibitor.

7.
Tissue Eng Part A ; 21(3-4): 510-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25159583

RESUMO

Cultured human urothelial cells can be used in tissue engineering for reconstruction of urothelial defects. For safety reasons, a fine characterization of the cells is required before use in reconstructive surgery. For these reasons, we aimed to characterize the effect of in vitro propagation of urothelial cells on gene expression and proliferative capacity. Gene expression of urothelial cells in passage two and eight was captured by using a microarray chip covering the whole human genome. To find relationships in biological functions and pathways, differentially regulated genes were subjected to pathway analysis using the WEB-based Gene Set Analysis Toolkit (WebGestalt). Proliferative capacity was tested with population doubling time, efficiency in colony formation assays, and immunocytochemistry. In addition, senescence markers were evaluated. Bioinformatics analysis revealed gene expression profile differences. Downregulated genes at passage eight clustered in biological pathways of cell cycle and DNA repair processes; upregulated genes had no obvious association to any specific biological function or pathway according to WebGestalt analysis, but individual genes with extracellular matrix, apoptosis, and cell morphology. Data were supported by reverse transcription-polymerase chain reaction (RT-PCR) and in vitro growth experiments. Passage two urothelial cells had higher efficiency in colony formation and lower population doubling time. An increase in senescence markers was detected at passage eight. We conclude that pretransplantation quality controls are important and, for reconstructive purposes, cells should be transplanted back to the patient as soon as possible to procure good proliferative capacity also after transplantation.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Proliferação de Células/fisiologia , Microambiente Celular/fisiologia , Proteoma/metabolismo , Urotélio/citologia , Urotélio/fisiologia , Adolescente , Células Cultivadas , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Lactente , Masculino , Valores de Referência
8.
J Cell Mol Med ; 16(7): 1593-605, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22003958

RESUMO

The thioredoxin system is a promising target when aiming to overcome the problem of clinical radiation resistance. Altered cellular redox status and redox sensitive thiols contributing to induction of resistance strongly connect the ubiquitous redox enzyme thioredoxin reductase (TrxR) to the cellular response to ionizing radiation. To further investigate possible strategies in combating clinical radiation resistance, human radio-resistant lung cancer cells were subjected to a combination of single fractions of γ-radiation at clinically relevant doses and non-toxic levels of a well-characterized thioredoxin reductase inhibitor, the phosphine gold(I) compound [Au(SCN)(PEt(3))]. The combination of the TrxR-inhibitor and ionizing radiation reduced the surviving fractions and impaired the ability of the U1810 cells to repopulate by approximately 50%. In addition, inhibition of thioredoxin reductase caused changes in the cell cycle distribution, suggesting a disturbance of the mitotic process. Global gene expression analysis also revealed clustered genetic expression changes connected to several major cellular pathways such as cell cycle, cellular response to stress and DNA damage. Specific TrxR-inhibition as a factor behind the achieved results was confirmed by correlation of gene expression patterns between gold and siRNA treatment. These results clearly demonstrate TrxR as an important factor conferring resistance to irradiation and the use of [Au(SCN)(PEt(3))] as a promising radiosensitizing agent.


Assuntos
Compostos de Ouro/farmacologia , Tolerância a Radiação , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Regulação para Cima , Western Blotting , Ciclo Celular/efeitos da radiação , Linhagem Celular , Humanos , Neoplasias Pulmonares/patologia , Oxirredução , Fosfinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Radiação Ionizante , Tiorredoxina Dissulfeto Redutase/metabolismo
9.
PLoS One ; 6(6): e14816, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21731601

RESUMO

BACKGROUND: Syndecans are proteoglycans whose core proteins have a short cytoplasmic domain, a transmembrane domain and a large N-terminal extracellular domain possessing glycosaminoglycan chains. Syndecans are involved in many important cellular processes. Our recent publications have demonstrated that syndecan-1 translocates into the nucleus and hampers tumor cell proliferation. In the present study, we aimed to investigate the role of syndecan-1 in tumor cell adhesion and migration, with special focus on the importance of its distinct protein domains, to better understand the structure-function relationship of syndecan-1 in tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: We utilized two mesenchymal tumor cell lines which were transfected to stably overexpress full-length syndecan-1 or truncated variants: the 78 which lacks the extracellular domain except the DRKE sequence proposed to be essential for oligomerization, the 77 which lacks the whole extracellular domain, and the RMKKK which serves as a nuclear localization signal. The deletion of the RMKKK motif from full-length syndecan-1 abolished the nuclear translocation of this proteoglycan. Various bioassays for cell adhesion, chemotaxis, random movement and wound healing were studied. Furthermore, we performed gene microarray to analyze the global gene expression pattern influenced by syndecan-1. Both full-length and truncated syndecan-1 constructs decrease tumor cell migration and motility, and affect cell adhesion. Distinct protein domains have differential effects, the extracellular domain is more important for promoting cell adhesion, while the transmembrane and cytoplasmic domains are sufficient for inhibition of cell migration. Cell behavior seems to depend also on the nuclear translocation of syndecan-1. Many genes are differentially regulated by syndecan-1 and a number of genes are actually involved in cell adhesion and migration. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that syndecan-1 regulates mesenchymal tumor cell adhesion and migration, and different domains have differential effects. Our study provides new insights into better understanding of the role of syndecans in tumor progression.


Assuntos
Movimento Celular , Mesoderma/metabolismo , Mesoderma/patologia , Sindecana-1/química , Sindecana-1/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Núcleo Celular/metabolismo , Quimiotaxia/genética , Citometria de Fluxo , Humanos , Dados de Sequência Molecular , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Deleção de Sequência/genética , Relação Estrutura-Atividade
10.
Exp Cell Res ; 313(14): 3141-52, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17560996

RESUMO

In T-cell acute lymphoblastic leukemia (T-ALL) NOTCH 1 receptors are frequently mutated. This leads to aberrantly high Notch signaling, but how this translates into deregulated cell cycle control and the transformed cell type is poorly understood. In this report, we analyze downstream responses resulting from the high level of NOTCH 1 signaling in T-ALL. Notch activity, measured immediately downstream of the NOTCH 1 receptor, is high, but expression of the canonical downstream Notch response genes HES 1 and HEY 2 is low both in primary cells from T-ALL patients and in T-ALL cell lines. This suggests that other immediate Notch downstream genes are activated, and we found that Notch signaling controls the levels of expression of the E3 ubiquitin ligase SKP2 and its target protein p27Kip1. We show that in T-ALL cell lines, recruitment of NOTCH 1 intracellular domain (ICD) to the SKP2 promoter was accompanied by high SKP2 and low p27Kip1 protein levels. In contrast, pharmacologically blocking Notch signaling reversed this situation and led to loss of NOTCH 1 ICD occupancy of the SKP2 promoter, decreased SKP2 and increased p27Kip1 expression. T-ALL cells show a rapid G1-S cell cycle transition, while blocked Notch signaling resulted in G0/G1 cell cycle arrest, also observed by transfection of p27Kip1 or, to a smaller extent, a dominant negative SKP2 allele. Collectively, our data suggest that the aberrantly high Notch signaling in T-ALL maintains SKP2 at a high level and reduces p27Kip1, leading to more rapid cell cycle progression.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Receptor Notch1/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Transdução de Sinais/fisiologia , Linfócitos T/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Criança , Inibidor de Quinase Dependente de Ciclina p27 , Perfilação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Análise de Sequência com Séries de Oligonucleotídeos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Regiões Promotoras Genéticas , Receptor Notch1/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Linfócitos T/citologia
11.
Exp Oncol ; 27(2): 102-7, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15995626

RESUMO

BACKGROUND: Measurements of DNA double strand breaks and their subsequent repair after in vitro irradiation has been suggested to be an alternative way of monitoring radiotherapeutic response. METHODS: In the present study, the DNA repair kinetics (using a neutral version of the Comet assay) up to 45 min after a single dose of 2 Gy was studied as well as the gene expression profiles, before and 45 min after the irradiation, in two human lung cancer cell lines with different radiosensitivity (U-1285 and U-1810). RESULTS: Immediately after the irradiation, both cell lines responded with increased levels of DNA damage. However, the induced damage was slightly higher in U-1810 (known to be radioresistant) than in U-1285 (known to be radiosensitive), and the latter cell line also seemed to have a slightly more efficient DNA-repair. The two different lung cancer cell lines were highly heterogeneous in gene expression, both before and after the irradiation, and there was no obvious relationship between the Comet data and the microarray data. CONCLUSION: Given the fact that U-1810 has been classified as radioresistant and U-1285 as radiosensitive in clonogenic assays, the results of the present study indicate that radiation-induced DNA double strand breaks and DNA-repair efficiency are poor indicators of the intrinsic radiosensitivity of human lung cancer cells irradiated with a single dose in vitro.


Assuntos
Biomarcadores Tumorais/metabolismo , Dano ao DNA , DNA de Neoplasias/efeitos da radiação , Perfilação da Expressão Gênica , Expressão Gênica/efeitos da radiação , Neoplasias Pulmonares/genética , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/metabolismo , Carcinoma de Células Grandes/patologia , Carcinoma de Células Pequenas/genética , Carcinoma de Células Pequenas/metabolismo , Carcinoma de Células Pequenas/patologia , Ensaio Cometa , Raios gama , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Tolerância a Radiação , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA