Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 13: 1261074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860064

RESUMO

Leishmaniasis is a widespread group of infectious diseases that significantly impact global health. Despite high prevalence, leishmaniasis often receives inadequate attention in the prioritization of measures targeting tropical diseases. The causative agents of leishmaniasis are protozoan parasites of the Leishmania genus, which give rise to a diverse range of clinical manifestations, including cutaneous and visceral forms. Visceral leishmaniasis (VL), the most severe form, can be life-threatening if left untreated. Parasites can spread systemically within the body, infecting a range of organs, such as the liver, spleen, bone marrow and lymph nodes. Natural reservoirs for these protozoa include rodents, dogs, foxes, jackals, and wolves, with dogs serving as the primary urban reservoir for Leishmania infantum. Dogs exhibit clinical and pathological similarities to human VL and are valuable models for studying disease progression. Both human and canine VL provoke clinical symptoms, such as organ enlargement, fever, weight loss and abnormal gamma globulin levels. Hematologic abnormalities have also been observed, including anemia, leukopenia with lymphocytosis, neutropenia, and thrombocytopenia. Studies in dogs have linked these hematologic changes in peripheral blood to alterations in the bone marrow. Mouse models of VL have also contributed significantly to our understanding of the mechanisms underlying these hematologic and bone marrow abnormalities. This review consolidates information on hematological and immunological changes in the bone marrow of humans, dogs, and mice infected with Leishmania species causing VL. It includes findings on the role of bone marrow as a source of parasite persistence in internal organs and VL development. Highlighting gaps in current knowledge, the review emphasizes the need for future research to enhance our understanding of VL and identify potential targets for novel diagnostic and therapeutic approaches.


Assuntos
Doenças do Cão , Leishmania infantum , Leishmaniose Visceral , Leishmaniose , Animais , Cães , Humanos , Camundongos , Leishmaniose Visceral/veterinária , Leishmaniose Visceral/diagnóstico , Medula Óssea/parasitologia , Medula Óssea/patologia , Leishmaniose/patologia , Pele/patologia , Doenças do Cão/epidemiologia
2.
Front Endocrinol (Lausanne) ; 13: 896378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898449

RESUMO

Aims: Pre-existing conditions, such as age, hypertension, obesity, and diabetes, constitute known risk factors for severe COVID-19. However, the impact of prediabetes mellitus (PDM) on COVID-19 severity is less clear. This study aimed to evaluate the influence of PDM in the acute and long-term phases of COVID-19. Materials and methods: We compared inflammatory mediators, laboratory and clinical parameters and symptoms in COVID-19 patients with prediabetes (PDM) and without diabetes (NDM) during the acute phase of infection and at three months post-hospitalization. Results: Patients with PDM had longer hospital stays and required intensive care unit admission more frequently than NDM. Upon hospitalization, PDM patients exhibited higher serum levels of interleukin 6 (IL-6), which is related to reduced partial pressure of oxygen (PaO2) in arterial blood, oxygen saturation (SpO2) and increased COVID-19 severity. However, at three months after discharge, those with PDM did not exhibit significant alterations in laboratory parameters or residual symptoms; however, PDM was observed to influence the profile of reported symptoms. Conclusions: PDM seems to be associated with increased risk of severe COVID-19, as well as higher serum levels of IL-6, which may constitute a potential biomarker of severe COVID-19 risk in affected patients. Furthermore, while PDM correlated with more severe acute-phase COVID-19, no long-term worsening of sequelae was observed.


Assuntos
COVID-19 , Diabetes Mellitus , Interleucina-6/biossíntese , Estado Pré-Diabético , COVID-19/complicações , Hospitalização , Humanos , Estado Pré-Diabético/complicações
3.
Front Immunol ; 12: 750648, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790196

RESUMO

Background: Leishmaniasis is a neglected arthropod-borne disease that affects millions of people worldwide. Successful Leishmania infections require the mitigation of immune cell functions leading to parasite survival and proliferation. A large body of evidence highlights the involvement of neutrophils (PMNs) and dendritic cells (DCs) in the establishment of immunological responses against these parasites. However, few studies, contemplate to what extent these cells interact synergistically to constrain Leishmania infection. Objective: We sought to investigate how PMNs and infected DCs interact in an in vitro model of Leishmania amazonensis infection. Material and Methods: Briefly, human PMNs and DCs were purified from the peripheral blood of healthy donors. Next, PMNs were activated with fibronectin and subsequently co-cultured with L. amazonensis-infected DCs. Results: We observed that L. amazonensis-infected DC exhibited lower rates of infection when co-cultivated with either resting or activated PMNs. Surprisingly, we found that the release of neutrophil enzymes was not involved in Leishmania killing. Next, we showed that the interaction between PMNs and infected-DCs was intermediated by DC-SIGN, further suggesting that parasite elimination occurs in a contact-dependent manner. Furthermore, we also observed that TNFα and ROS production was dependent on DC-SIGN-mediated contact, as well as parasite elimination is dependent on TNFα production in the co-culture. Finally, we observed that direct contact between PMNs and DCs are required to restore the expression of DC maturation molecules during L. amazonensis infection. Conclusion: Our findings suggest that the engagement of direct contact between PMNs and L. amazonensis-infected DC via DC-SIGN is required for the production of inflammatory mediators with subsequent parasite elimination and DC maturation.


Assuntos
Moléculas de Adesão Celular/imunologia , Células Dendríticas/imunologia , Lectinas Tipo C/imunologia , Leishmaniose/imunologia , Neutrófilos/imunologia , Receptores de Superfície Celular/imunologia , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Humanos , Leishmania , Leishmaniose/parasitologia , Fator de Necrose Tumoral alfa/imunologia
4.
J Vis Exp ; (173)2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34398153

RESUMO

Phagocytosis is an orchestrated process that involves distinct steps: recognition, binding, and internalization. Professional phagocytes take up Leishmania parasites by phagocytosis, consisting of recognizing ligands on parasite surfaces by multiple host cell receptors. Binding of Leishmania to macrophage membranes occurs through complement receptor type 1 (CR1) and complement receptor type 3 (CR3) and Pattern Recognition Receptors. Lipophosphoglycan (LPG) and 63 kDa glycoprotein (gp63) are the main ligands involved in macrophage-Leishmania interactions. Following the initial recognition of parasite ligands by host cell receptors, parasites become internalized, survive, and multiply within parasitophorous vacuoles. The maturation process of Leishmania-induced vacuoles involves the acquisition of molecules from intracellular vesicles, including monomeric G protein Rab 5 and Rab 7, lysosomal associated membrane protein 1 (LAMP-1), lysosomal associated membrane protein 2 (LAMP-2), and microtubule-associated protein 1A/1B-light chain 3 (LC3). Here, we describe methods to evaluate the early events occurring during Leishmania interaction with the host cells using confocal microscopy, including (i) binding (ii) internalization, and (iii) phagosome maturation. By adding to the body of knowledge surrounding these determinants of infection outcome, we hope to improve the understanding of the pathogenesis of Leishmania infection and support the eventual search for novel chemotherapeutic targets.


Assuntos
Leishmania , Leishmaniose , Humanos , Macrófagos , Microscopia Confocal , Fagocitose
5.
J Vis Exp ; (174)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34424241

RESUMO

Macrophages are multifunctional cells essential to the immune system function, and the primary host cell in Leishmania braziliensis (Lb) infection. These cells are specialized in microorganism recognition and phagocytosis, but also activate other immune cells and present antigens, as well as promote inflammation and tissue repair. Here, we describe a protocol to obtain mononuclear cells from peripheral blood (PBMC) of healthy donors to separate monocytes that then differentiate into macrophages. These cells can then be infected in vitro at different Lb concentrations to evaluate the ability to control infection, as well as evaluate host cell immune response, which can be measured by several methods. PBMCs were first isolated by centrifuging with Ficoll-Hypaque gradient and then plated to allow monocytes to adhere to culture plates; non-adherent cells were removed by washing. Next, adherent cells were cultured with macrophage-colony stimulating factor (M-CSF) for 7 days to induce macrophage differentiation. We suggest plating 2 x 106 cells per well on 24-well plates in order to obtain 2 x 105 macrophages. Fully differentiated macrophages can then be infected with Lb for 4 or 24 hours. This protocol results in a significant percentage of infected cells, which can be assessed by optical or fluorescence microscopy. In addition to infection index, parasite load can be measured by counting the numbers of parasites inside each cell. Further molecular and functional assays can also be performed in culture supernatants or within the macrophages themselves, which allows this protocol to be applied in a variety of contexts and also adapted to other intracellular parasite species.


Assuntos
Leishmania braziliensis , Células Cultivadas , Humanos , Imunidade Inata , Leucócitos Mononucleares , Macrófagos , Monócitos
6.
Front Immunol ; 12: 647987, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248935

RESUMO

Cutaneous leishmaniasis caused by L. braziliensis induces a pronounced Th1 inflammatory response characterized by IFN-γ production. Even in the absence of parasites, lesions result from a severe inflammatory response in which inflammatory cytokines play an important role. Different approaches have been used to evaluate the therapeutic potential of orally administrated heat shock proteins (Hsp). These proteins are evolutionarily preserved from bacteria to humans, highly expressed under inflammatory conditions and described as immunodominant antigens. Tolerance induced by the oral administration of Hsp65 is capable of suppressing inflammation and inducing differentiation in regulatory cells, and has been successfully demonstrated in several experimental models of autoimmune and inflammatory diseases. We initially administered recombinant Lactococcus lactis (L. lactis) prior to infection as a proof of concept, in order to verify its immunomodulatory potential in the inflammatory response arising from L. braziliensis. Using this experimental approach, we demonstrated that the oral administration of a recombinant L. lactis strain, which produces and secretes Hsp65 from Mycobacterium leprae directly into the gut, mitigated the effects of inflammation caused by L. braziliensis infection in association or not with PAM 3CSK4 (N-α-Palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-L-cysteine, a TLR2 agonist). This was evidenced by the production of anti-inflammatory cytokines and the expansion of regulatory T cells in the draining lymph nodes of BALB/c mice. Our in vitro experimental results suggest that IL-10, TLR-2 and LAP are important immunomodulators in L. braziliensis infection. In addition, recombinant L. lactis administered 4 weeks after infection was observed to decrease lesion size, as well as the number of parasites, and produced a higher IL-10 production and decrease IFN-γ secretion. Together, these results indicate that Hsp65-producing L. lactis can be considered as an alternative candidate for treatment in both autoimmune diseases, as well as in chronic infections that cause inflammatory disease.


Assuntos
Proteínas de Bactérias/administração & dosagem , Proteínas de Bactérias/metabolismo , Chaperonina 60/administração & dosagem , Chaperonina 60/metabolismo , Tolerância Imunológica/efeitos dos fármacos , Lactococcus lactis/metabolismo , Leishmania braziliensis/efeitos dos fármacos , Leishmaniose Cutânea/tratamento farmacológico , Mycobacterium leprae/enzimologia , Administração Oral , Animais , Proteínas de Bactérias/genética , Chaperonina 60/genética , Citocinas/metabolismo , Feminino , Inflamação/tratamento farmacológico , Inflamação/imunologia , Lactococcus lactis/genética , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia
7.
Proc Natl Acad Sci U S A ; 117(48): 30619-30627, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33184178

RESUMO

The initial production of inflammatory mediators dictates host defense as well as tissue injury. Inflammasome activation is a constituent of the inflammatory response by recognizing pathogen and host-derived products and eliciting the production of IL-1ß and IL-18 in addition to inducing a type of inflammatory cell death termed "pyroptosis." Leukotriene B4 (LTB4) is a lipid mediator produced quickly (seconds to minutes) by phagocytes and induces chemotaxis, increases cytokine/chemokine production, and enhances antimicrobial effector functions. Whether LTB4 directly activates the inflammasome remains to be determined. Our data show that endogenously produced LTB4 is required for the expression of pro-IL-1ß and enhances inflammasome assembly in vivo and in vitro. Furthermore, LTB4-mediated Bruton's tyrosine kinase (BTK) activation is required for inflammasome assembly in vivo as well for IL-1ß-enhanced skin host defense. Together, these data unveil a new role for LTB4 in enhancing the expression and assembly of inflammasome components and suggest that while blocking LTB4 actions could be a promising therapeutic strategy to prevent inflammasome-mediated diseases, exogenous LTB4 can be used as an adjuvant to boost inflammasome-dependent host defense.


Assuntos
Interações Hospedeiro-Patógeno , Inflamassomos/metabolismo , Leucotrieno B4/metabolismo , Fenômenos Fisiológicos da Pele , Pele/metabolismo , Animais , Biópsia , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Mediadores da Inflamação/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Staphylococcus aureus Resistente à Meticilina , Camundongos , Pele/imunologia , Pele/microbiologia , Pele/patologia
8.
Emerg Microbes Infect ; 9(1): 1275-1286, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32525457

RESUMO

Poorly controlled diabetes mellitus leads to several comorbidities, including susceptibility to infections. Hyperglycemia increases phagocyte responsiveness, however immune cells from people with diabetes show inadequate antimicrobial functions. We and others have shown that aberrant production of leukotriene B4 (LTB4) is detrimental to host defense in models of bacterial infection. Here, we will unveil the consequences of high glucose in the outcome of Leishmania braziliensis skin infection in people with diabetes and determine the role of LTB4 in human phagocytes. We show that diabetes leads to higher systemic levels of LTB4, IL-6 and TNF-α in cutaneous leishmaniasis. Only LTB4 correlated with blood glucose levels and healing time in diabetes comorbidity. Skin lesions of people with leishmaniasis and diabetes exhibit increased neutrophil and amastigote numbers. Monocyte-derived macrophages from these individuals showed higher L. braziliensis loads, reduced production of Reactive Oxygen Species and unbalanced LTB4/PGE2 ratio. Our data reveal a systemic inflammation driven by diabetes comorbidity in opposition to a local reduced capacity to resolve L. braziliensis infection and a worse disease outcome.


Assuntos
Diabetes Mellitus/imunologia , Dinoprostona/metabolismo , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/metabolismo , Leucotrieno B4/metabolismo , Brasil , Células Cultivadas , Comorbidade , Estudos Transversais , Diabetes Mellitus/metabolismo , Diabetes Mellitus/parasitologia , Humanos , Interleucina-6/metabolismo , Leishmaniose Cutânea/imunologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Fagócitos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
J Infect Dis ; 221(6): 973-982, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31748808

RESUMO

BACKGROUND: Skin lesions from patients infected with Leishmania braziliensis has been associated with inflammation induced by cytotoxic CD8+ T cells. In addition, CD8+ T cell-mediated cytotoxicity has not been linked to parasite killing. Meanwhile, the cytotoxic role played by natural killer (NK) cells in cutaneous leishmaniasis (CL) remains poorly understood. METHODS: In this study, we observed higher frequencies of NK cells in the peripheral blood of CL patients compared with healthy subjects, and that NK cells expressed more interferon-γ, tumor necrosis factor (TNF), granzyme B, and perforin than CD8+ T cells. RESULTS: We also found that most of the cytotoxic activity in CL lesions was triggered by NK cells, and that the high levels of granzyme B produced in CL lesions was associated with larger lesion size. Furthermore, an in vitro blockade of granzyme B was observed to decrease TNF production. CONCCLUSIONS: Our data, taken together, suggest an important role by NK cells in inducing inflammation in CL, thereby contributing to disease immunopathology.


Assuntos
Regulação Enzimológica da Expressão Gênica/imunologia , Granzimas/metabolismo , Inflamação/metabolismo , Células Matadoras Naturais/enzimologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/patologia , Linfócitos T CD4-Positivos , Estudos de Casos e Controles , Granzimas/genética , Humanos , Interferon gama/genética , Interferon gama/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Perforina/genética , Perforina/metabolismo , Linfócitos T Citotóxicos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
10.
Front Immunol ; 9: 640, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670621

RESUMO

Localized cutaneous leishmaniasis (LCL) is a chronic disease characterized by ulcerated skin lesion(s) and uncontrolled inflammation. The mechanisms underlying the pathogenesis of LCL are not completely understood, and little is known about posttranscriptional regulation during LCL. MicroRNAs (miRNAs) are non-coding small RNAs that regulate gene expression and can be implicated in the pathogenesis of LCL. We investigated the involvement of miRNAs and their targets genes in human LCL using publicly available transcriptome data sets followed by ex vivo validation. Initial analysis highlighted that miRNA expression is altered during LCL, as patients clustered separately from controls. Joint analysis identified eight high confidence miRNAs that had altered expression (-1.5 ≤ fold change ≥ 1.5; p < 0.05) between cutaneous ulcers and uninfected skin. We found that the expression of miR-193b and miR-671 are greatly associated with their target genes, CD40 and TNFR, indicating the important role of these miRNAs in the expression of genes related to the inflammatory response observed in LCL. In addition, network analysis revealed that miR-193b, miR-671, and TREM1 correlate only in patients who show faster wound healing (up to 59 days) and not in patients who require longer cure times (more than 60 days). Given that these miRNAs are associated with control of inflammation and healing time, our findings reveal that they might influence the pathogenesis and prognosis of LCL.


Assuntos
Leishmania braziliensis/fisiologia , Leishmaniose Cutânea/genética , MicroRNAs/genética , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Biomarcadores Farmacológicos , Antígenos CD40/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Leishmaniose Cutânea/tratamento farmacológico , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fenômenos Fisiológicos da Pele/genética , Resultado do Tratamento , Cicatrização/genética
11.
J Immunol Res ; 2016: 3967436, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904694

RESUMO

Leishmaniasis is a group of neglected diseases whose clinical manifestations depend on factors from the host and the pathogen. It is an important public health problem worldwide caused by the protozoan parasite from the Leishmania genus. Cutaneous Leishmaniasis (CL) is the most frequent form of this disease transmitted by the bite of an infected sandfly into the host skin. The parasites can be uptook and/or recognized by macrophages, neutrophils, and/or dendritic cells (DCs). Initially, DCs were described to play a protective role in activating the immune response against Leishmania parasites. However, several reports showed a dichotomic role of DCs in modulating the host immune response to susceptibility or resistance in CL. In this review, we discuss (1) the interactions between DCs and parasites from different species of Leishmania and (2) the crosstalk of DCs and other cells during CL infection. The complexity of these interactions profoundly affects the adaptive immune response and, consequently, the disease outcome, especially from Leishmania species of the New World.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/parasitologia , Leishmania/imunologia , Leishmaniose Cutânea/imunologia , Animais , Simulação por Computador , Células Dendríticas/classificação , Humanos , Leishmania/classificação , Leishmania/parasitologia , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/terapia , Macrófagos/imunologia , Camundongos , Neutrófilos/imunologia , Vacinas Protozoárias/imunologia , Biologia de Sistemas
12.
J Immunol ; 196(4): 1865-73, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26800873

RESUMO

Neutrophils mediate early responses against pathogens, and they become activated during endothelial transmigration toward the inflammatory site. In the current study, human neutrophils were activated in vitro with immobilized extracellular matrix proteins, such as fibronectin (FN), collagen, and laminin. Neutrophil activation by FN, but not other extracellular matrix proteins, induces the release of the granules' contents, measured as matrix metalloproteinase 9 and neutrophil elastase activity in culture supernatant, as well as reactive oxygen species production. Upon contact with Leishmania amazonensis-infected macrophages, these FN-activated neutrophils reduce the parasite burden through a mechanism independent of cell contact. The release of granule proteases, such as myeloperoxidase, neutrophil elastase, and matrix metalloproteinase 9, activates macrophages through TLRs, leading to the production of inflammatory mediators, TNF-α and leukotriene B4 (LTB4), which are involved in parasite killing by infected macrophages. The pharmacological inhibition of degranulation reverted this effect, abolishing LTB4 and TNF production. Together, these results suggest that FN-driven degranulation of neutrophils induces the production of LTB4 and TNF by infected macrophages, leading to the control of Leishmania infection.


Assuntos
Leishmaniose Cutânea/imunologia , Leucotrieno B4/biossíntese , Macrófagos/imunologia , Macrófagos/parasitologia , Neutrófilos/imunologia , Degranulação Celular/imunologia , Linhagem Celular , Técnicas de Cocultura , Fibronectinas/imunologia , Humanos , Leishmania , Leishmania mexicana , Leucotrieno B4/imunologia , Microscopia Eletrônica de Transmissão , Ativação de Neutrófilo/imunologia
13.
Parasit Vectors ; 7: 601, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25526785

RESUMO

BACKGROUND: Eicosanoids and sand fly saliva have a critical role in the Leishmania infection. Here, we evaluated the effect of Lutzomyia longipalpis salivary gland sonicate (SGS) on neutrophil and monocyte recruitment and activation of eicosanoid production in a murine model of inflammation. METHODS: C57BL/6 mice were inoculated intraperitonealy with Lutzomyia longipalpis SGS or Leishmania infantum or both, followed by analyses of cell recruitment, parasite load and eicosanoid production. RESULTS: Intraperitoneal injection of Lutzomyia longipalpis SGS together with Leishmania infantum induced an early increased parasite viability in monocytes and neutrophils. L. longipalpis SGS increased prostaglandin E2 (PGE2), but reduced leukotriene B4 (LTB4) production ex vivo in peritoneal leukocytes. In addition, the pharmacological inhibition of cyclooxygenase 2 (COX-2) with NS-398 decreased parasite viability inside macrophages during Leishmania infection in the presence of L. longipalpis SGS arguing that PGE2 production is associated with diminished parasite killing. CONCLUSIONS: These findings indicate that L. longipalpis SGS is a critical factor driving immune evasion of Leishmania through modulation of PGE2/LTB4 axis, which may represent an important mechanism on establishment of the infection.


Assuntos
Dinoprostona/imunologia , Leishmania infantum/imunologia , Leishmaniose Visceral/imunologia , Leucotrieno B4/imunologia , Psychodidae/imunologia , Animais , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Leishmaniose Visceral/parasitologia , Leucócitos/parasitologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitrobenzenos/farmacologia , Psychodidae/parasitologia , Glândulas Salivares/imunologia , Sulfonamidas/farmacologia
14.
Nanomedicine ; 9(7): 985-95, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23603355

RESUMO

We recently demonstrated that immunization with polyester poly(lactide-co-glycolide acid) (PLGA) nanoparticles loaded with the 11-kDa Leishmania vaccine candidate kinetoplastid membrane protein 11 (KMP-11) significantly reduced parasite load in vivo. Presently, we explored the ability of the recombinant PLGA nanoparticles to stimulate innate responses in macrophages and the outcome of infection with Leishmania braziliensis in vitro. Incubation of macrophages with KMP-11-loaded PLGA nanoparticles significantly decreased parasite load. In parallel, we observed the augmented production of nitric oxide, superoxide, TNF-α and IL-6. An increased release of CCL2/MCP-1 and CXCL1/KC was also observed, resulting in macrophage and neutrophil recruitment in vitro. Lastly, the incubation of macrophages with KMP-11-loaded PLGA nanoparticles triggered the activation of caspase-1 and the secretion of IL-1ß and IL-18, suggesting inflammasome participation. Inhibition of caspase-1 significantly increased the parasite load. We conclude that KMP-11-loaded PLGA nanoparticles promote the killing of intracellular Leishmania parasites through the induction of potent innate responses. FROM THE CLINICAL EDITOR: In this novel study, KMP-11-loaded PLGA nanoparticles are demonstrated to promote the killing of intracellular Leishmania parasites through enhanced innate immune responses by multiple mechanisms. Future clinical applications would have a major effect on our efforts to address parasitic infections.


Assuntos
Imunidade Inata/imunologia , Ácido Láctico/química , Leishmania/citologia , Leishmania/imunologia , Nanopartículas/química , Ácido Poliglicólico/química , Proteínas de Protozoários/imunologia , Animais , Morte Celular/efeitos dos fármacos , Quimiocinas/metabolismo , DNA/metabolismo , Feminino , Imunidade Inata/efeitos dos fármacos , Inflamassomos/metabolismo , Ácido Láctico/farmacologia , Leishmania/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/parasitologia , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/biossíntese , Ácido Poliglicólico/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Superóxidos/metabolismo
15.
Int J Nanomedicine ; 7: 2115-27, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22619548

RESUMO

BACKGROUND: Vaccine development has been a priority in the fight against leishmaniases, which are vector-borne diseases caused by Leishmania protozoa. Among the different immunization strategies employed to date is inoculation of plasmid DNA coding for parasite antigens, which has a demonstrated ability to induce humoral and cellular immune responses. In this sense, inoculation of plasmid DNA encoding Leishmania kinetoplasmid membrane protein-11 (KMP-11) was able to confer protection against visceral leishmaniasis. However, recently the use of antigen delivery systems such as poly(lactic-co-glycolic acid) (PLGA) nanoparticles has also proven effective for eliciting protective immune responses. METHODS: In the present work, we tested two immunization strategies with the goal of obtaining protection, in terms of lesion development and parasite load, against cutaneous leishmaniasis caused by L. braziliensis. One strategy involved immunization with plasmid DNA encoding L. infantum chagasi KMP-11. Alternatively, mice were primed with PLGA nanoparticles loaded with the recombinant plasmid DNA and boosted using PLGA nanoparticles loaded with recombinant KMP-11. RESULTS: Both immunization strategies elicited detectable cellular immune responses with the presence of both proinflammatory and anti-inflammatory cytokines; mice receiving the recombinant PLGA nanoparticle formulations also demonstrated anti-KMP-11 IgG1 and IgG2a. Mice were then challenged with L. braziliensis, in the presence of sand fly saliva. Lesion development was not inhibited following either immunization strategy. However, immunization with PLGA nanoparticles resulted in a more prominent reduction in parasite load at the infection site when compared with immunization using plasmid DNA alone. This effect was associated with a local increase in interferon-gamma and in tumor necrosis factor-alpha. Both immunization strategies also resulted in a lower parasite load in the draining lymph nodes, albeit not significantly. CONCLUSION: Our results encourage the pursuit of immunization strategies employing nanobased delivery systems for vaccine development against cutaneous leishmaniasis caused by L. braziliensis infection.


Assuntos
Vacinas contra Leishmaniose/administração & dosagem , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/prevenção & controle , Animais , Anticorpos Antiprotozoários/biossíntese , Antígenos de Protozoários/administração & dosagem , Citocinas/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Imunidade Celular , Ácido Láctico/química , Leishmania braziliensis/genética , Leishmania braziliensis/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Nanomedicina , Nanopartículas/administração & dosagem , Nanopartículas/química , Plasmídeos/administração & dosagem , Plasmídeos/genética , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Vacinas de DNA/administração & dosagem
16.
J Leukoc Biol ; 90(3): 575-82, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21685247

RESUMO

Neutrophils are considered the host's first line of defense against infections and have been implicated in the immunopathogenesis of Leishmaniasis. Leishmania parasites are inoculated alongside vectors' saliva, which is a rich source of pharmacologically active substances that interfere with host immune response. In the present study, we tested the hypothesis that salivary components from Lutzomyia longipalpis, an important vector of visceral Leishmaniasis, enhance neutrophil apoptosis. Murine inflammatory peritoneal neutrophils cultured in the presence of SGS presented increased surface expression of FasL and underwent caspase-dependent and FasL-mediated apoptosis. This proapoptosis effect of SGS on neutrophils was abrogated by pretreatment with protease as well as preincubation with antisaliva antibodies. Furthermore, in the presence of Leishmania chagasi, SGS also increased apoptosis on neutrophils and increased PGE(2) release and decreased ROS production by neutrophils, while enhancing parasite viability inside these cells. The increased parasite burden was abrogated by treatment with z-VAD, a pan caspase inhibitor, and NS-398, a COX-2 inhibitor. In the presence of SGS, Leishmania-infected neutrophils produced higher levels of MCP-1 and attracted a high number of macrophages by chemotaxis in vitro assays. Both of these events were abrogated by pretreatment of neutrophils with bindarit, an inhibitor of CCL2/MCP-1 expression. Taken together, our data support the hypothesis that vector salivary proteins trigger caspase-dependent and FasL-mediated apoptosis, thereby favoring Leishmania survival inside neutrophils, which may represent an important mechanism for the establishment of Leishmania infection.


Assuntos
Apoptose , Leishmaniose/imunologia , Neutrófilos/patologia , Neutrófilos/parasitologia , Psychodidae/imunologia , Saliva/imunologia , Animais , Caspases/metabolismo , Quimiocina CCL2/metabolismo , Quimiotaxia , Proteína Ligante Fas/metabolismo , Feminino , Interações Hospedeiro-Parasita , Immunoblotting , Leishmania , Leishmaniose/parasitologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Psychodidae/parasitologia , Espécies Reativas de Oxigênio/metabolismo , Saliva/química , Saliva/parasitologia , Glândulas Salivares/citologia , Glândulas Salivares/imunologia , Glândulas Salivares/parasitologia
17.
PLoS Negl Trop Dis ; 4(11): e873, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-21072234

RESUMO

BACKGROUND: Sand fly saliva contains molecules that modify the host's hemostasis and immune responses. Nevertheless, the role played by this saliva in the induction of key elements of inflammatory responses, such as lipid bodies (LB, also known as lipid droplets) and eicosanoids, has been poorly investigated. LBs are cytoplasmic organelles involved in arachidonic acid metabolism that form eicosanoids in response to inflammatory stimuli. In this study, we assessed the role of salivary gland sonicate (SGS) from Lutzomyia (L.) longipalpis, a Leishmania infantum chagasi vector, in the induction of LBs and eicosanoid production by macrophages in vitro and ex vivo. METHODOLOGY/PRINCIPAL FINDINGS: Different doses of L. longipalpis SGS were injected into peritoneal cavities of C57BL/6 mice. SGS induced increased macrophage and neutrophil recruitment into the peritoneal cavity at different time points. Sand fly saliva enhanced PGE2 and LTB4 production by harvested peritoneal leukocytes after ex vivo stimulation with a calcium ionophore. At three and six hours post-injection, L. longipalpis SGS induced more intense LB staining in macrophages, but not in neutrophils, compared with mice injected with saline. Moreover, macrophages harvested by peritoneal lavage and stimulated with SGS in vitro presented a dose- and time-dependent increase in LB numbers, which was correlated with increased PGE2 production. Furthermore, COX-2 and PGE-synthase co-localized within the LBs induced by L. longipalpis saliva. PGE2 production by macrophages induced by SGS was abrogated by treatment with NS-398, a COX-2 inhibitor. Strikingly, SGS triggered ERK-1/2 and PKC-α phosphorylation, and blockage of the ERK-1/2 and PKC-α pathways inhibited the SGS effect on PGE2 production by macrophages. CONCLUSION: In sum, our results show that L. longipalpis saliva induces lipid body formation and PGE2 production by macrophages ex vivo and in vitro via the ERK-1/2 and PKC-α signaling pathways. This study provides new insights regarding the pharmacological mechanisms whereby L. longipalpis saliva influences the early steps of the host's inflammatory response.


Assuntos
Dinoprostona/imunologia , Insetos Vetores/imunologia , Leishmaniose Visceral/imunologia , Macrófagos/imunologia , Organelas/imunologia , Psychodidae/imunologia , Saliva/imunologia , Animais , Células Cultivadas , Dinoprostona/metabolismo , Feminino , Humanos , Leishmania infantum/fisiologia , Leishmaniose Visceral/parasitologia , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organelas/metabolismo , Glândulas Salivares/imunologia
18.
Arch Oral Biol ; 55(12): 975-80, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20880516

RESUMO

OBJECTIVE: The emergence of periodontal medicine increased interest in defining the behaviour of peripheral blood cells in periodontitis subjects in comparison with healthy group. The aim of this study was to evaluate the levels of interleukin (IL)-8, tumour necrosis factor-α (TNF-α), IL-6 and IL-10 released by Escherichia coli lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMC) obtained from the peripheral blood of chronic periodontitis subjects. DESIGN: PBMC samples were isolated from 19 systemically healthy donors, divided into generalized chronic periodontitis (n=10) and healthy (n=9) subjects. Cells were incubated for 24-48 h in 500 µL wells containing RPMI 1640 and stimulated with 1.0 ng/mL of E. coli LPS. Supernatants were used to quantify the amounts of IL-8, TNF-α, IL-6 and IL-10 released using enzyme-linked immunosorbent assay (ELISA). RESULTS: PBMC cells from periodontitis subjects released higher levels of TNF-α and IL-6 than those from healthy subjects (P<0.05). Conversely, the supernatants of the stimulated PBMC cells obtained from healthy subjects presented higher amounts of IL-8 than those from periodontitis (P<0.05). No differences were observed in the levels of IL-10 (P>0.05) between groups. CONCLUSION: In conclusion, the results of the present study showed that E. coli LPS-stimulated PBMC from subjects with periodontitis present a different pattern of cytokine release when compared to PBMC from healthy subjects. This phenomenon could have implications locally, in periodontitis, as well as in systemic diseases.


Assuntos
Periodontite Crônica/sangue , Citocinas/sangue , Leucócitos Mononucleares/metabolismo , Adulto , Idoso , Células Cultivadas , Escherichia coli , Feminino , Hemorragia Gengival/sangue , Humanos , Mediadores da Inflamação/sangue , Interleucina-10/sangue , Interleucina-6/sangue , Interleucina-8/sangue , Leucócitos Mononucleares/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Perda da Inserção Periodontal/sangue , Bolsa Periodontal/sangue , Fumar , Fator de Necrose Tumoral alfa/sangue
19.
Eur J Immunol ; 40(10): 2830-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20812234

RESUMO

Mucosal leishmaniasis (ML) is characterised by severe tissue destruction. Herein, we evaluated the involvement of the IL-17-type response in the inflammatory infiltrate of biopsy specimens from 17 ML patients. IL-17 and IL-17-inducing cytokines (IL-1ß, IL-23, IL-6 and TGF-ß) were detected by immunohistochemistry in ML patients. IL-17(+) cells exhibited CD4(+), CD8(+) or CD14(+) phenotypes, and numerous IL-17(+) cells co-expressed the CC chemokine receptor 6 (CCR6). Neutrophils, a hallmark of Th17-mediated inflammation, were regularly detected in necrotic and perinecrotic areas and stained positive for neutrophil elastase, myeloperoxidase and MMP-9. Taken together, these observations demonstrate the existence of Th17 cells in ML lesions associated with neutrophils in areas of tissue injury and suggest that IL-17 is involved in ML pathogenesis.


Assuntos
Interleucina-17/imunologia , Leishmania/imunologia , Leishmaniose Mucocutânea/imunologia , Neutrófilos/imunologia , Receptores CCR6/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Humanos , Imuno-Histoquímica , Interleucina-17/biossíntese , Leishmaniose Mucocutânea/parasitologia , Masculino , Metaloproteinase 9 da Matriz/sangue , Metaloproteinase 9 da Matriz/imunologia , Microscopia Confocal , Pessoa de Meia-Idade , Neutrófilos/enzimologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Peroxidase/sangue , Peroxidase/imunologia , Estatísticas não Paramétricas
20.
Parasitol Int ; 58(1): 45-50, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18992366

RESUMO

The miniexon gene has a central role in the processing of polycistronic pre-mRNA of kinetoplastids. It is added to the 5' extremity of each mRNA, supplying the 5'-capped structure to the molecule. Previous studies in Leishmania (Leishmania) major showed that the overexpression of the miniexon array attenuates the virulence of the parasite in in vivo assays. The results presented here extend those findings to Viannia subgenus. Leishmania (Viannia) braziliensis was transfected with a cosmid harboring a tandem array of one hundred miniexon gene copies and then characterized by Northern blot analysis. The overexpression of the exogenous gene was confirmed and its effect on the virulence of L. (V.) braziliensis was investigated in hamsters. In BALB/c mice we could not detect parasites during the course of 15 weeks of infection. In addition, hamsters infected with transfectants overexpressing the miniexon gene exhibited only a minor footpad swelling of late onset and failed to develop progressive lesion, these attenuated parasites could be recovered from the inoculation site 1 year after infection. The persistence of parasites in the host indicates that a stable line overexpressing the miniexon may be tested as live vaccine against leishmaniasis.


Assuntos
Éxons/genética , Leishmania braziliensis/patogenicidade , Leishmaniose Cutânea/patologia , Regulação para Cima , Animais , Linhagem Celular , Cricetinae , Éxons/fisiologia , Humanos , Leishmania braziliensis/genética , Leishmania braziliensis/crescimento & desenvolvimento , Leishmaniose Cutânea/parasitologia , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , RNA Líder para Processamento/metabolismo , Transfecção , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA