Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Allergy Clin Immunol ; 151(4): 976-990.e5, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36473503

RESUMO

BACKGROUND: Dysregulation of airway smooth muscle cells (ASM) is central to the severity of asthma. Which molecules dominantly control ASM in asthma is unclear. High levels of the cytokine LIGHT (aka TNFSF14) have been linked to asthma severity and lower baseline predicted FEV1 percentage, implying that signals through its receptors might directly control ASM dysfunction. OBJECTIVE: Our study sought to determine whether signaling via lymphotoxin beta receptor (LTßR) or herpesvirus entry mediator from LIGHT dominantly drives ASM hyperreactivity induced by allergen. METHODS: Conditional knockout mice deficient for LTßR or herpesvirus entry mediator in smooth muscle cells were used to determine their role in ASM deregulation and airway hyperresponsiveness (AHR) in vivo. Human ASM were used to study signals induced by LTßR. RESULTS: LTßR was strongly expressed in ASM from normal and asthmatic subjects compared to several other receptors implicated in smooth muscle deregulation. Correspondingly, conditional deletion of LTßR only in smooth muscle cells in smMHCCreLTßRfl/fl mice minimized changes in their numbers and mass as well as AHR induced by house dust mite allergen in a model of severe asthma. Intratracheal LIGHT administration independently induced ASM hypertrophy and AHR in vivo dependent on direct LTßR signals to ASM. LIGHT promoted contractility, hypertrophy, and hyperplasia of human ASM in vitro. Distinguishing LTßR from the receptors for IL-13, TNF, and IL-17, which have also been implicated in smooth muscle dysregulation, LIGHT promoted NF-κB-inducing kinase-dependent noncanonical nuclear factor kappa-light-chain enhancer of activated B cells in ASM in vitro, leading to sustained accumulation of F-actin, phosphorylation of myosin light chain kinase, and contractile activity. CONCLUSIONS: LTßR signals directly and dominantly drive airway smooth muscle hyperresponsiveness relevant for pathogenesis of airway remodeling in severe asthma.


Assuntos
Asma , Membro 14 de Receptores do Fator de Necrose Tumoral , Humanos , Camundongos , Animais , Receptor beta de Linfotoxina/genética , Asma/patologia , Músculo Liso , Miócitos de Músculo Liso/patologia , Camundongos Knockout , Alérgenos , Pulmão/patologia
3.
J Immunol ; 205(9): 2414-2422, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32958689

RESUMO

Lung fibrosis and tissue remodeling are features of chronic diseases such as severe asthma, idiopathic pulmonary fibrosis, and systemic sclerosis. However, fibrosis-targeted therapies are currently limited. We demonstrate in mouse models of allergen- and bleomycin-driven airway inflammation that neutralization of the TNF family cytokine TL1A through Ab blocking or genetic deletion of its receptor DR3 restricted increases in peribronchial smooth muscle mass and accumulation of lung collagen, primary features of remodeling. TL1A was found as a soluble molecule in the airways and expressed on the surface of alveolar macrophages, dendritic cells, innate lymphoid type 2 cells, and subpopulations of lung structural cells. DR3 was found on CD4 T cells, innate lymphoid type 2 cells, macrophages, fibroblasts, and some epithelial cells. Suggesting in part a direct activity on lung structural cells, administration of recombinant TL1A into the naive mouse airways drove remodeling in the absence of other inflammatory stimuli, innate lymphoid cells, and adaptive immunity. Correspondingly, human lung fibroblasts and bronchial epithelial cells were found to express DR3 and responded to TL1A by proliferating and/or producing fibrotic molecules such as collagen and periostin. Reagents that disrupt the interaction of TL1A with DR3 then have the potential to prevent deregulated tissue cell activity in lung diseases that involve fibrosis and remodeling.


Assuntos
Remodelação das Vias Aéreas/imunologia , Fibrose Pulmonar Idiopática/imunologia , Pulmão/imunologia , Membro 15 da Superfamília de Ligantes de Fatores de Necrose Tumoral/imunologia , Imunidade Adaptativa/imunologia , Animais , Asma/imunologia , Bleomicina/imunologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Células Dendríticas/imunologia , Células Epiteliais/imunologia , Feminino , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Linfócitos/imunologia , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Endogâmicos C57BL
4.
Elife ; 92020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32014112

RESUMO

Cyclic AMP (cAMP) is involved in many biological processes but little is known regarding its role in shaping immunity. Here we show that cAMP-PKA-CREB signaling (a pattern recognition receptor [PRR]-independent mechanism) regulates conventional type-2 Dendritic Cells (cDC2s) in mice and reprograms their Th17-inducing properties via repression of IRF4 and KLF4, transcription factors essential for cDC2-mediated Th2 induction. In mice, genetic loss of IRF4 phenocopies the effects of cAMP on Th17 induction and restoration of IRF4 prevents the cAMP effect. Moreover, curdlan, a PRR-dependent microbial product, activates CREB and represses IRF4 and KLF4, resulting in a pro-Th17 phenotype of cDC2s. These in vitro and in vivo results define a novel signaling pathway by which cDC2s display plasticity and provide a new molecular basis for the classification of novel cDC2 and cDC17 subsets. The findings also reveal that repressing IRF4 and KLF4 pathway can be harnessed for immuno-regulation.


Assuntos
Fatores Reguladores de Interferon , Receptores de Reconhecimento de Padrão , Transdução de Sinais/imunologia , Células Th17 , Células Th2 , Animais , Linhagem Celular Tumoral , AMP Cíclico/imunologia , AMP Cíclico/metabolismo , Citocinas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Fatores Reguladores de Interferon/antagonistas & inibidores , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Fator 4 Semelhante a Kruppel , Camundongos , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Células Th2/imunologia , Células Th2/metabolismo
5.
Allergy Asthma Immunol Res ; 11(5): 604-621, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31332973

RESUMO

Asthma is a common disorder of the airways characterized by airway inflammation and by decline in lung function and airway remodeling in a subset of asthmatics. Airway remodeling is characterized by structural changes which include airway smooth muscle hypertrophy/hyperplasia, subepithelial fibrosis due to thickening of the reticular basement membrane, mucus metaplasia of the epithelium, and angiogenesis. Epidemiologic studies suggest that both genetic and environmental factors may contribute to decline in lung function and airway remodeling in a subset of asthmatics. Environmental factors include respiratory viral infection-triggered asthma exacerbations, and tobacco smoke. There is also evidence that several asthma candidate genes may contribute to decline in lung function, including ADAM33, PLAUR, VEGF, IL13, CHI3L1, TSLP, GSDMB, TGFB1, POSTN, ESR1 and ARG2. In addition, mediators or cytokines, including cysteinyl leukotrienes, matrix metallopeptidase-9, interleukin-33 and eosinophil expression of transforming growth factor-ß, may contribute to airway remodeling in asthma. Although increased airway smooth muscle is associated with reduced lung function (i.e. forced expiratory volume in 1 second) in asthma, there have been few long-term studies to determine how individual pathologic features of airway remodeling contribute to decline in lung function in asthma. Clinical studies with inhibitors of individual gene products, cytokines or mediators are needed in asthmatic patients to identify their individual role in decline in lung function and/or airway remodeling.

7.
J Allergy Clin Immunol ; 141(1): 329-338.e12, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28366795

RESUMO

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) expand in the lungs of mice during type 2 inflammation induced by the fungal allergen Alternaria alternata. The increase in ILC2 numbers in the lung has been largely attributed to local proliferation and whether ILC2s migrate from the circulation to the lung after Alternaria exposure is unknown. OBJECTIVE: We examined whether human (lung, lymph node, and blood) and mouse lung ILC2s express ß1 and ß2 integrin adhesion molecules and whether these integrins are required for trafficking of ILC2s into the lungs of mice. METHODS: Human and mouse ILC2s were assessed for surface expression of ß1 and ß2 integrin adhesion molecules by using flow cytometry. The role of ß1 and ß2 integrins in ILC2 trafficking to the lungs was assessed by in vivo blocking of these integrins before airway exposure to Alternaria in mice. RESULTS: Both human and mouse lung ILC2s express high levels of ß1 and ß2 integrin adhesion receptors. Intranasal administration of Alternaria challenge reduced ILC2 numbers in the bone marrow and concurrently increased blood and lung ILC2 numbers. In vivo blocking of ß2 integrins (CD18) significantly reduced ILC2 numbers in the lungs but did not alter ILC2 proliferation, apoptosis, and function. In contrast, in vivo blocking of ß1 integrins or α4 integrins did not affect lung ILC2 numbers. CONCLUSION: ILC2 numbers increase in the mouse lung not only through local proliferation but also through trafficking from the circulation into the lung using ß2 rather than ß1 or α4 integrins.


Assuntos
Alternaria/imunologia , Antígenos CD18/metabolismo , Imunidade Inata , Integrina beta1/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Animais , Apoptose/imunologia , Biomarcadores , Medula Óssea/imunologia , Medula Óssea/metabolismo , Antígenos CD18/genética , Citocinas/metabolismo , Citometria de Fluxo , Expressão Gênica , Humanos , Integrina beta1/genética , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Selectina L/genética , Selectina L/metabolismo , Pulmão/patologia , Contagem de Linfócitos , Camundongos , Células Th2/imunologia , Células Th2/metabolismo
8.
J Immunol ; 199(7): 2215-2224, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28827284

RESUMO

Orosomucoid like 3 (ORMDL3), a gene localized to chromosome 17q21, has been linked in epidemiologic studies to childhood asthma and rhinovirus (RV) infections. As the single nucleotide polymorphisms linking ORMDL3 to asthma are associated with increased expression of ORMDL3, we have used hORMDL3zp3-Cre mice (which have universal increased expression of human ORMDL3) to determine whether infection of these transgenic mice with RV influences levels of airway inflammation or RV viral load. RV infection of hORMDL3zp3-Cre mice resulted in reduced RV viral load assessed by quantitative real-time PCR (lung and airway epithelium), as well as reduced airway inflammation (total bronchoalveolar lavage cells, neutrophils, macrophages, and lymphocytes) compared with RV-infected wild-type mice. Levels of the antiviral pathways including IFNs (IFN-α, IFN-ß, IFN-λ) and RNAse L were significantly increased in the lungs of RV-infected hORMDL3zp3-Cre mice. Levels of the antiviral mouse oligoadenylate synthetase (mOas)1g pathway and RNAse L were upregulated in the lungs of unchallenged hORMDL3zp3-Cre mice. In addition, levels of mOas2, but not mOas1 (mOas1a, mOas1b, mOas1g), or mOas3 pathways were significantly more upregulated by IFNs (IFN-α, IFN-ß, IFN-λ) in epithelial cells from hORMDL3zp3-Cre mice compared with RV-infected wild-type mouse epithelial cells. RNAse L-deficient mice infected with RV had increased RV viral load. Overall, these studies suggest that increased levels of ORMDL3 contribute to antiviral defense to RV infection in mice through pathways that may include IFNs (IFN-α, IFN-ß, IFN-λ), OAS, and RNAse L.


Assuntos
Pulmão/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Infecções por Picornaviridae/imunologia , Infecções por Picornaviridae/virologia , Rhinovirus/isolamento & purificação , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Animais , Asma/imunologia , Asma/virologia , Endorribonucleases/deficiência , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células Epiteliais/virologia , Inflamação/imunologia , Inflamação/virologia , Interferon beta/biossíntese , Interferon beta/genética , Interferon beta/imunologia , Interferons/biossíntese , Interferons/genética , Interferons/imunologia , Pulmão/imunologia , Camundongos , Camundongos Transgênicos , Infecções por Picornaviridae/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Carga Viral
9.
Adv Immunol ; 135: 1-52, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28826527

RESUMO

Chromosome 17q21 contains a cluster of genes including ORMDL3 and GSDMB, which have been highly linked to asthma in genome-wide association studies. ORMDL3 is localized to the endoplasmic reticulum and regulates downstream pathways including sphingolipids, metalloproteases, remodeling genes, and chemokines. ORMDL3 inhibits serine palmitoyl-CoA transferase, the rate-limiting enzyme for sphingolipid biosynthesis. In addition, ORMDL3 activates the ATF6α branch of the unfolded protein response which regulates SERCA2b and IL-6, pathways of potential importance to asthma. The SNP-linking chromosome 17q21 to asthma is associated with increased ORMDL3 and GSDMB expression. Mice expressing either increased levels of human ORMDL3, or human GSDMB, have an asthma phenotype characterized by increased airway responsiveness and increased airway remodeling (increased smooth muscle and fibrosis) in the absence of airway inflammation. GSDMB regulates expression of 5-LO and TGF-ß1 which are known pathways involved in the pathogenesis of asthma. GSDMB is one of four members of the GSDM family (GSDMA, GSDMB, GSDMC, and GSDMD). GSDMD (located on chromosome 8q24 and not linked to asthma) has emerged as a key mediator of pyroptosis. GSDMD is a key component of the NLPR3 inflammasome and is required for its activation. GSDMD undergoes proteolytic cleavage by caspase-1 to release its N-terminal fragment, which in turn mediates pyroptosis and IL-1ß secretion. Chromosome 17q21 has not only been linked to asthma but also to type 1 diabetes, inflammatory bowel disease, and primary biliary cirrhosis suggesting that future insights into the biology of genes located in this region will increase our understanding of these diseases.


Assuntos
Asma/imunologia , Diabetes Mellitus Tipo 1/imunologia , Doenças Inflamatórias Intestinais/imunologia , Cirrose Hepática Biliar/imunologia , Proteínas de Membrana/imunologia , Proteínas de Neoplasias/imunologia , Animais , Asma/genética , Asma/patologia , Quimiocinas/genética , Quimiocinas/imunologia , Cromossomos Humanos Par 17/química , Cromossomos Humanos Par 17/imunologia , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Regulação da Expressão Gênica , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Cirrose Hepática Biliar/genética , Cirrose Hepática Biliar/patologia , Proteínas de Membrana/genética , Camundongos , Família Multigênica , Proteínas de Neoplasias/genética , Polimorfismo Genético , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Transdução de Sinais , Esfingolipídeos/imunologia , Esfingolipídeos/metabolismo
10.
J Immunol ; 199(3): 1096-1104, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28667163

RESUMO

Asthma is a complex disease that is promoted by dysregulated immunity and the presence of many cytokine and lipid mediators. Despite this, there is a paucity of data demonstrating the combined effects of multiple mediators in asthma pathogenesis. Group 2 innate lymphoid cells (ILC2s) have recently been shown to play important roles in the initiation of allergic inflammation; however, it is unclear whether lipid mediators, such as cysteinyl leukotrienes (CysLTs), which are present in asthma, could further amplify the effects of IL-33 on ILC2 activation and lung inflammation. In this article, we show that airway challenges with the parent CysLT, leukotriene C4 (LTC4), given in combination with low-dose IL-33 to naive wild-type mice, led to synergistic increases in airway Th2 cytokines, eosinophilia, and peribronchial inflammation compared with IL-33 alone. Further, the numbers of proliferating and cytokine-producing lung ILC2s were increased after challenge with both LTC4 and IL-33. Levels of CysLT1R, CysLT2R, and candidate leukotriene E4 receptor P2Y12 mRNAs were increased in ILC2s. The synergistic effect of LTC4 with IL-33 was completely dependent upon CysLT1R, because CysLT1R-/- mice, but not CysLT2R-/- mice, had abrogated responses. Further, CysLTs directly potentiated IL-5 and IL-13 production from purified ILC2s stimulated with IL-33 and resulted in NFAT1 nuclear translocation. Finally, CysLT1R-/- mice had reduced lung eosinophils and ILC2 responses after exposure to the fungal allergen Alternaria alternata Thus, CysLT1R promotes LTC4- and Alternaria-induced ILC2 activation and lung inflammation. These findings suggest that multiple pathways likely exist in asthma to activate ILC2s and propagate inflammatory responses.


Assuntos
Imunidade Inata , Interleucina-33/imunologia , Leucotrieno C4/metabolismo , Ativação Linfocitária , Linfócitos/imunologia , Pneumonia/imunologia , Alérgenos/imunologia , Alternaria/imunologia , Animais , Asma/imunologia , Asma/fisiopatologia , Citocinas/biossíntese , Citocinas/imunologia , Citocinas/metabolismo , Eosinofilia/imunologia , Interleucina-33/administração & dosagem , Leucotrieno C4/imunologia , Pulmão/imunologia , Camundongos , Pneumonia/metabolismo , Receptores de Leucotrienos/administração & dosagem , Receptores de Leucotrienos/deficiência , Receptores de Leucotrienos/genética , Receptores de Leucotrienos/imunologia , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/imunologia , Células Th2/imunologia
11.
Proc Natl Acad Sci U S A ; 113(46): 13132-13137, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799535

RESUMO

Gasdermin B (GSDMB) on chromosome 17q21 demonstrates a strong genetic linkage to asthma, but its function in asthma is unknown. Here we identified that GSDMB is highly expressed in lung bronchial epithelium in human asthma. Overexpression of GSDMB in primary human bronchial epithelium increased expression of genes important to both airway remodeling [TGF-ß1, 5-lipoxygenase (5-LO)] and airway-hyperresponsiveness (AHR) (5-LO). Interestingly, hGSDMBZp3-Cre mice expressing increased levels of the human GSDMB transgene showed a significant spontaneous increase in AHR and a significant spontaneous increase in airway remodeling, with increased smooth muscle mass and increased fibrosis in the absence of airway inflammation. In addition, hGSDMBZp3-Cre mice showed increases in the same remodeling and AHR mediators (TGF-ß1, 5-LO) observed in vitro in GSDMB-overexpressing epithelial cells. GSDMB induces TGF-ß1 expression via induction of 5-LO, because knockdown of 5-LO in epithelial cells overexpressing GSDMB inhibited TGF-ß1 expression. These studies demonstrate that GSDMB, a gene highly linked to asthma but whose function in asthma is previously unknown, regulates AHR and airway remodeling without airway inflammation through a previously unrecognized pathway in which GSDMB induces 5-LO to induce TGF-ß1 in bronchial epithelium.


Assuntos
Remodelação das Vias Aéreas/genética , Asma/genética , Hiper-Reatividade Brônquica/genética , Proteínas de Neoplasias/genética , Remodelação das Vias Aéreas/imunologia , Animais , Antígenos de Dermatophagoides/imunologia , Araquidonato 5-Lipoxigenase/genética , Araquidonato 5-Lipoxigenase/metabolismo , Asma/imunologia , Asma/metabolismo , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/metabolismo , Células Cultivadas , Colágeno/metabolismo , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Pulmão/citologia , Pulmão/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Transgênicos , Fenótipo , RNA Mensageiro/metabolismo , Mucosa Respiratória/metabolismo
12.
J Allergy Clin Immunol ; 138(3): 791-800.e4, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27212082

RESUMO

BACKGROUND: Eosinophilic esophagitis (EoE) is an allergic disease of increasing worldwide incidence. Complications are due to tissue remodeling and involve TGF-ß1-mediated fibrosis. Plasminogen activator inhibitor 1 (PAI-1/serpinE1) can be induced by TGF-ß1, but its role in EoE is not known. OBJECTIVE: We sought to understand the expression and role of PAI-1 in patients with EoE. METHODS: We used esophageal biopsy specimens and plasma samples from control subjects and patients with EoE, primary human esophageal epithelial cells, and fibroblasts from patients with EoE in immunohistochemistry, quantitative PCR, and immunoassay experiments to understand the induction of PAI-1 by TGF-ß1, the relationship between PAI-1 and esophageal fibrosis, and the role of PAI-1 in fibrotic gene expression. RESULTS: PAI-1 expression was significantly increased in epithelial cells of biopsy specimens from patients with active EoE compared with that seen in biopsy specimens from patients with inactive EoE or control subjects (P < .001). Treatment of primary esophageal epithelial cells with recombinant TGF-ß1 increased PAI-1 transcription, intracellular protein expression, and secretion. Esophageal PAI-1 expression correlated with basal zone hyperplasia, fibrosis, and markers of esophageal remodeling, including vimentin, TGF-ß1, collagen I, fibronectin, and matrix metalloproteases, and plasma PAI-1 levels correlated with plasma TGF-ß1 levels. PAI-1 inhibition significantly decreased baseline and TGF-ß1-induced fibrotic gene expression. CONCLUSIONS: PAI-1 expression is significantly increased in the epithelium in patients with EoE and reflects fibrosis, and its inhibition decreases TGF-ß1-induced gene expression. Epithelial PAI-1 might serve as a marker of EoE severity and form part of a TGF-ß1-induced profibrotic network.


Assuntos
Esofagite Eosinofílica/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Adolescente , Criança , Pré-Escolar , Esofagite Eosinofílica/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Esôfago/citologia , Esôfago/metabolismo , Esôfago/patologia , Feminino , Fibroblastos/metabolismo , Fibrose , Humanos , Lactente , Masculino
13.
Curr Allergy Asthma Rep ; 16(1): 8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26746844

RESUMO

Recent discoveries have led to the identification of a novel group of immune cells, the innate lymphoid cells (ILCs). The members of this group are divided into three subpopulations: ILC1s, ILC2s, and ILC3s. ILC2s produce Th2 cytokines, IL-4, IL-5, and IL-13, upon activation by epithelial cell-derived cytokines, lipid mediators (cysteinyl leukotrienes and prostaglandin D2), and TNF family member TL1A and promote structural and immune cell responses in the airways after antigen exposure. In addition, ILC2 function is also influenced by inducible T cell costimulator (ICOS)/ICOS-ligand (ICOS-L) interactions via direct contact between immune cells. The most common airway antigens are allergens and viruses which are highly linked to the induction of airway diseases with underlying type 2 inflammation including asthma and allergic rhinitis. Based on recent findings linking ILC2s and airway Th2 responses, there is intensive investigation into the role of ILC2s in human disease with the hope of a better understanding of the pathophysiology and the discovery of novel potential therapeutic targets. This review summarizes the recent advances made in elucidating ILC2 involvement in human Th2 airway disease.


Assuntos
Asma/imunologia , Citocinas/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Rinite Alérgica/imunologia , Alérgenos/imunologia , Humanos , Sistema Respiratório/imunologia
14.
J Allergy Clin Immunol ; 137(1): 147-156.e8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26233926

RESUMO

BACKGROUND: Eosinophilic esophagitis (EoE) is a chronic TH2 inflammatory disease characterized by tissue remodeling that leads to esophageal strictures and food impactions. Effects of therapy on long-term remodeling in patients with pediatric eosinophil-associated diseases have not been previously described. OBJECTIVE: We sought to understand the long-term control of esophageal remodeling in patients with EoE. METHODS: We assessed endoscopic and histologic remodeling and TGF-ß1 expression in esophageal biopsy specimens from children (n = 32) with EoE treated with topical corticosteroids (TCSs) over 10 years (mean, 4.5 years). We used standardized EoE scoring tools to gauge endoscopic and symptom features. RESULTS: Seven hundred thirty-eight biopsy specimens from 246 endoscopic procedures were evaluated over 10 years. Four hundred eighty-six biopsy specimens had adequate lamina propria for evaluation of subepithelial remodeling. The severity of epithelial esophageal eosinophilia correlated with epithelial remodeling (basal zone hyperplasia, desquamation, and dilated intercellular spaces; P < .0001), lamina propria eosinophilia (P < .0001), and fibrosis (P < .0001). Sixteen subjects were initial responders (<15 eosinophils/high-power field) to TCSs. Responders and nonresponders spent 54% and 97% of their total disease duration with active EoE (P < .001) and 23% and 53% (P < .02) with maximal fibrosis scores, respectively. Responders had lower endoscopy scores during their disease duration (P = .013). Having less than 15 eosinophils/high-power field at any time correlated with lower fibrosis and endoscopic severity. TGF-ß1(+) cell counts decreased in responders at the first biopsy, but this was not sustained. Symptoms did not correlate with other disease features. CONCLUSIONS: Children with EoE have substantial esophageal remodeling, which associates with inflammation and can improve in a sustainable manner with TCSs. Although endoscopic features correspond to histologic features, symptoms did not correlate with inflammation or fibrosis.


Assuntos
Esofagite Eosinofílica/tratamento farmacológico , Esofagite Eosinofílica/patologia , Esôfago/patologia , Glucocorticoides/uso terapêutico , Administração Tópica , Adolescente , Criança , Pré-Escolar , Esofagite Eosinofílica/metabolismo , Esôfago/metabolismo , Feminino , Glucocorticoides/administração & dosagem , Humanos , Lactente , Masculino , Inibidores da Bomba de Prótons/uso terapêutico , Fator de Crescimento Transformador beta1/metabolismo
15.
J Allergy Clin Immunol ; 137(1): 278-288.e6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26100084

RESUMO

BACKGROUND: Rhinovirus infection at an early age has been associated with development of asthma, but how rhinovirus influences the immune response is not clear. OBJECTIVE: Tolerance to inhaled antigen is mediated through induction of regulatory T (Treg) cells, and we examined whether rhinovirus infection of the respiratory tract can block airway tolerance by modulating Treg cells. METHODS: The immune response to intranasal ovalbumin in mice was assessed with concomitant infection with RV1B, and the factors induced in vivo were compared with those made by human lung epithelial cells infected in vitro with RV16. RESULTS: RV1B infection of mice abrogated tolerance induced by inhalation of soluble ovalbumin, suppressing the normal generation of forkhead box protein 3-positive Treg cells while promoting TH2 cells. Furthermore, RV1B infection led to susceptibility to asthmatic lung disease when mice subsequently re-encountered aeroantigen. RV1B promoted early in vivo expression of the TNF family protein OX40 ligand on lung dendritic cells that was dependent on the innate cytokine thymic stromal lymphopoietin (TSLP) and also induced another innate cytokine, IL-33. Inhibiting each of these pathways allowed the natural development of Treg cells while minimizing TH2 differentiation and restored tolerance in the face of RV1B infection. In accordance, RV16 infection of human lung epithelial cells upregulated TSLP and IL-33 expression. CONCLUSIONS: These results suggest that infection of the respiratory epithelium with rhinovirus can antagonize tolerance to inhaled antigen through combined induction of TSLP, IL-33, and OX40 ligand and that this can lead to susceptibility to asthmatic lung inflammation.


Assuntos
Citocinas/imunologia , Tolerância Imunológica , Interleucina-33/imunologia , Glicoproteínas de Membrana/imunologia , Infecções por Picornaviridae/imunologia , Rhinovirus , Fatores de Necrose Tumoral/imunologia , Animais , Antígenos/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Células Epiteliais , Humanos , Interleucina-13/imunologia , Interleucina-4/imunologia , Pulmão/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ligante OX40 , Ovalbumina/imunologia , Hipersensibilidade Respiratória/imunologia , Linfócitos T/imunologia , Linfopoietina do Estroma do Timo
16.
J Immunol ; 195(8): 3546-56, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26355153

RESUMO

Chronic asthma is associated with airway remodeling and decline in lung function. In this article, we show that follistatin-like 1 (Fstl1), a mediator not previously associated with asthma, is highly expressed by macrophages in the lungs of humans with severe asthma. Chronic allergen-challenged Lys-Cre(tg) /Fstl1(Δ/Δ) mice in whom Fstl1 is inactivated in macrophages/myeloid cells had significantly reduced airway remodeling and reduced levels of oncostatin M (OSM), a cytokine previously not known to be regulated by Fstl1. The importance of the Fstl1 induction of OSM to airway remodeling was demonstrated in murine studies in which administration of Fstl1 induced airway remodeling and increased OSM, whereas administration of an anti-OSM Ab blocked the effect of Fstl1 on inducing airway remodeling, eosinophilic airway inflammation, and airway hyperresponsiveness, all cardinal features of asthma. Overall, these studies demonstrate that the Fstl1/OSM pathway may be a novel pathway to inhibit airway remodeling in severe human asthma.


Assuntos
Remodelação das Vias Aéreas/imunologia , Asma/imunologia , Proteínas Relacionadas à Folistatina/imunologia , Oncostatina M/imunologia , Transdução de Sinais/imunologia , Remodelação das Vias Aéreas/efeitos dos fármacos , Remodelação das Vias Aéreas/genética , Animais , Anticorpos/imunologia , Anticorpos/farmacologia , Asma/genética , Asma/patologia , Feminino , Proteínas Relacionadas à Folistatina/genética , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Oncostatina M/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
18.
Proc Natl Acad Sci U S A ; 112(5): 1529-34, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605931

RESUMO

The inductive role of dendritic cells (DC) in Th2 differentiation has not been fully defined. We addressed this gap in knowledge by focusing on signaling events mediated by the heterotrimeric GTP binding proteins Gαs, and Gαi, which respectively stimulate and inhibit the activation of adenylyl cyclases and the synthesis of cAMP. We show here that deletion of Gnas, the gene that encodes Gαs in mouse CD11c(+) cells (Gnas(ΔCD11c) mice), and the accompanying decrease in cAMP provoke Th2 polarization and yields a prominent allergic phenotype, whereas increases in cAMP inhibit these responses. The effects of cAMP on DC can be demonstrated in vitro and in vivo and are mediated via PKA. Certain gene products made by Gnas(ΔCD11c) DC affect the Th2 bias. These findings imply that G protein-coupled receptors, the physiological regulators of Gαs and Gαi activation and cAMP formation, act via PKA to regulate Th bias in DC and in turn, Th2-mediated immunopathologies.


Assuntos
Asma/imunologia , AMP Cíclico/metabolismo , Células Dendríticas/metabolismo , Hipersensibilidade/imunologia , Células Th2/imunologia , Transferência Adotiva , Animais , Cromograninas , Células Dendríticas/citologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Camundongos
19.
J Pediatr Gastroenterol Nutr ; 61(2): 194-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25539192

RESUMO

OBJECTIVES: Eosinophilic esophagitis (EoE) is a chronic, antigen-mediated disease in children and adults associated with substantial esophageal remodeling and fibrosis. The expression of the remodeling-associated matrix metalloproteinases (MMPs) has not been previously detailed in EoE. METHODS: MMP-2 and -14 expression and cellular localization were assessed using real-time quantitative polymerase chain reaction and immunohistochemistry/immunofluorescence in EoE fibroblasts, active and inactive pediatric EoE biopsies, and nondiseased control biopsies. The effect of transforming growth factor (TGF)-ß1 treatment on MMP-2 expression in cultured esophageal epithelial (HET1A) cells was analyzed. RESULTS: MMP-2 and -14 mRNA were expressed in EoE fibroblasts and biopsies. Proliferating epithelial cells produced MMP-14 more abundantly in EoE than in controls (P < 0.001) and the degree of epithelial MMP-14 expression correlated positively with basal zone hyperplasia (r = 0.65, P = 0.002). EoE lamina propria had higher numbers of MMP-2- and -14-positive cells (906 ±â€Š167 and 701 ±â€Š93 cells/mm²) as compared with controls (258 ±â€Š93 cells/mm², P < 0.01 and 232 ±â€Š54 cells/mm², P < 0.01), and MMP-14 expression correlated with the severity of fibrosis. Following therapy with topical corticosteroids, MMP-14 and -2 were significantly diminished (P < 0.01). TGF-ß1 increased the expression and secretion of MMP-2 from esophageal epithelial HET1A cells. CONCLUSIONS: MMP-2 and -14 are elevated in pediatric patients with EoE and significantly decrease following topical corticosteroid therapy. TGF-ß1 increases MMP-2 in esophageal epithelial cells. This alludes to previously unappreciated role for MMPs in EoE-associated esophageal remodeling and a potential positive feedback loop via TGF-ß1.


Assuntos
Corticosteroides/uso terapêutico , Esofagite Eosinofílica/enzimologia , Metaloproteinase 14 da Matriz/análise , Metaloproteinase 2 da Matriz/análise , Biópsia , Criança , Esofagite Eosinofílica/tratamento farmacológico , Esofagite Eosinofílica/patologia , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Feminino , Fibroblastos/enzimologia , Imunofluorescência , Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Masculino , Metaloproteinase 14 da Matriz/efeitos dos fármacos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Metaloproteinase 2 da Matriz/genética , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real , Fator de Crescimento Transformador beta1/farmacologia
20.
Clin Immunol ; 155(1): 126-135, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25236785

RESUMO

Group 2 innate lymphoid cells (ILC2s) have recently been identified in human nasal polyps, but whether numbers of ILC2s differ by polyp endotype or are influenced by corticosteroid use is unknown. Here, we show that eosinophilic nasal polyps contained double the number of ILC2s vs. non-eosinophilic polyps. Polyp ILC2s were also reduced by 50% in patients treated with systemic corticosteroids. Further, using a fungal allergen challenge mouse model, we detected greatly reduced Th2 cytokine-producing and Ki-67+ proliferating lung ILC2s in mice receiving dexamethasone. Finally, ILC2 Annexin V staining revealed extensive apoptosis after corticosteroid treatment in vivo and in vitro. Thus, ILC2s are elevated in the eosinophilic nasal polyp endotype and systemic corticosteroid treatment correlated with reduced polyp ILC2s. Finally, allergen-challenged mice showed reduced ILC2s and increased ILC2 apoptosis after corticosteroid treatment suggesting that ILC2 may be responsive to corticosteroids in eosinophilic respiratory disease.


Assuntos
Dexametasona/farmacologia , Linfócitos/classificação , Metilprednisolona/farmacologia , Pólipos Nasais/patologia , Prednisona/farmacologia , Adulto , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Dexametasona/administração & dosagem , Feminino , Humanos , Masculino , Metilprednisolona/administração & dosagem , Camundongos , Pólipos Nasais/genética , Prednisona/administração & dosagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA