Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
JCI Insight ; 8(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37440461

RESUMO

The adrenal glands synthesize and release essential steroid hormones such as cortisol and aldosterone, but many aspects of human adrenal gland development are not well understood. Here, we combined single-cell and bulk RNA sequencing, spatial transcriptomics, IHC, and micro-focus computed tomography to investigate key aspects of adrenal development in the first 20 weeks of gestation. We demonstrate rapid adrenal growth and vascularization, with more cell division in the outer definitive zone (DZ). Steroidogenic pathways favored androgen synthesis in the central fetal zone, but DZ capacity to synthesize cortisol and aldosterone developed with time. Core transcriptional regulators were identified, with localized expression of HOPX (also known as Hop homeobox/homeobox-only protein) in the DZ. Potential ligand-receptor interactions between mesenchyme and adrenal cortex were seen (e.g., RSPO3/LGR4). Growth-promoting imprinted genes were enriched in the developing cortex (e.g., IGF2, PEG3). These findings reveal aspects of human adrenal development and have clinical implications for understanding primary adrenal insufficiency and related postnatal adrenal disorders, such as adrenal tumor development, steroid disorders, and neonatal stress.


Assuntos
Córtex Suprarrenal , Aldosterona , Recém-Nascido , Humanos , Aldosterona/metabolismo , Hidrocortisona/metabolismo , Glândulas Suprarrenais/metabolismo , Esteroides , Proteínas de Homeodomínio/metabolismo
2.
JCI Insight ; 7(5)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35138268

RESUMO

Primary ovarian insufficiency (POI) affects 1% of women and carries significant medical and psychosocial sequelae. Approximately 10% of POI has a defined genetic cause, with most implicated genes relating to biological processes involved in early fetal ovary development and function. Recently, Ythdc2, an RNA helicase and N6-methyladenosine reader, has emerged as a regulator of meiosis in mice. Here, we describe homozygous pathogenic variants in YTHDC2 in 3 women with early-onset POI from 2 families: c. 2567C>G, p.P856R in the helicase-associated (HA2) domain and c.1129G>T, p.E377*. We demonstrated that YTHDC2 is expressed in the developing human fetal ovary and is upregulated in meiotic germ cells, together with related meiosis-associated factors. The p.P856R variant resulted in a less flexible protein that likely disrupted downstream conformational kinetics of the HA2 domain, whereas the p.E377* variant truncated the helicase core. Taken together, our results reveal that YTHDC2 is a key regulator of meiosis in humans and pathogenic variants within this gene are associated with POI.


Assuntos
Insuficiência Ovariana Primária , RNA Helicases , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Feminino , Humanos , Meiose , Insuficiência Ovariana Primária/genética , RNA Helicases/genética
3.
Pediatr Blood Cancer ; 69(3): e29513, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34971078

RESUMO

BACKGROUND: Minimal residual disease (MRD) measured on end-of-induction bone marrow (BM) is the most important biomarker for guiding therapy in pediatric acute lymphoblastic leukemia (ALL). Due to limited sensitivity of current approaches, peripheral blood (PB) is not a reliable source for identifying patients needing treatment changes. We sought to determine if high-throughput sequencing (HTS) (next-generation sequencing) of rearranged immunoglobulin and T-cell receptor genes can overcome this and be used to measure MRD in PB. PROCEDURE: We employed a quantitative HTS approach to accurately measure MRD from one million cell equivalents of DNA from 17 PB samples collected at day 29 after induction therapy in patients with precursor B-cell ALL. We compared these results to the gold-standard real-time PCR result obtained from their paired BM samples, median follow-up 49 months. RESULTS: With the increased sensitivity, detecting up to one abnormal cell in a million normal cells, we were able to detect MRD in the PB by HTS in all those patients requiring treatment intensification (MRD ≥ 0.005% in BM). CONCLUSION: This is proof of principle that using the increased sensitivity of HTS, PB can be used to measure MRD and stratify children with ALL. The method is cost effective, rapid, accurate, and reproducible, with inherent advantages in children. Importantly, increasing the frequency testing by PB as opposed to intermittent BM sampling may allow extension of the dynamic range of MRD, giving a more complete picture of the kinetics of disease remission while improving relapse prediction and speed of detection.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Estudos de Viabilidade , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Células Precursoras de Linfócitos B , Estudos Prospectivos
4.
J Invest Dermatol ; 140(5): 1035-1044.e7, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31705875

RESUMO

Keratitis-ichthyosis-deafness (KID) syndrome is a severe, untreatable condition characterized by ocular, auditory, and cutaneous abnormalities, with major complications of infection and skin cancer. Most cases of KID syndrome (86%) are caused by a heterozygous missense mutation (c.148G>A, p.D50N) in the GJB2 gene, encoding gap junction protein Cx26, which alters gating properties of Cx26 channels in a dominant manner. We hypothesized that a mutant allele-specific small interfering RNA could rescue the cellular phenotype in patient keratinocytes (KCs). A KID syndrome cell line (KID-KC) was established from primary patient KCs with a heterozygous p.D50N mutation. This cell line displayed impaired gap junction communication and hyperactive hemichannels, confirmed by dye transfer, patch clamp, and neurobiotin uptake assays. A human-murine chimeric skin graft model constructed with KID-KCs mimicked patient skin in vivo, further confirming the validity of these cells as a model. In vitro treatment with allele-specific small interfering RNA led to robust inhibition of the mutant GJB2 allele without altering expression of the wild-type allele. This corrected both gap junction and hemichannel activity. Notably, allele-specific small interfering RNA treatment caused only low-level off-target effects in KID-KCs, as detected by genome-wide RNA sequencing. Our data provide an important proof-of-concept and model system for the potential use of allele-specific small interfering RNA in treating KID syndrome and other dominant genetic conditions.


Assuntos
Conexinas/genética , Queratinócitos/fisiologia , Ceratite/genética , Mutação de Sentido Incorreto/genética , RNA Interferente Pequeno/genética , Pele/metabolismo , Alelos , Animais , Linhagem Celular , Quimera , Conexina 26 , Junções Comunicantes/metabolismo , Xenoenxertos , Heterozigoto , Humanos , Ceratite/terapia , Potenciais da Membrana , Camundongos , Pele/patologia , Transplante de Pele
5.
Nat Med ; 25(9): 1408-1414, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31477906

RESUMO

Chimeric antigen receptor (CAR)-modified T cells targeting CD19 demonstrate unparalleled responses in relapsed/refractory acute lymphoblastic leukemia (ALL)1-5, but toxicity, including cytokine-release syndrome (CRS) and neurotoxicity, limits broader application. Moreover, 40-60% of patients relapse owing to poor CAR T cell persistence or emergence of CD19- clones. Some factors, including the choice of single-chain spacer6 and extracellular7 and costimulatory domains8, have a profound effect on CAR T cell function and persistence. However, little is known about the impact of CAR binding affinity. There is evidence of a ceiling above which increased immunoreceptor affinity may adversely affect T cell responses9-11. We generated a novel CD19 CAR (CAT) with a lower affinity than FMC63, the high-affinity binder used in many clinical studies1-4. CAT CAR T cells showed increased proliferation and cytotoxicity in vitro and had enhanced proliferative and in vivo antitumor activity compared with FMC63 CAR T cells. In a clinical study (CARPALL, NCT02443831 ), 12/14 patients with relapsed/refractory pediatric B cell acute lymphoblastic leukemia treated with CAT CAR T cells achieved molecular remission. Persistence was demonstrated in 11 of 14 patients at last follow-up, with enhanced CAR T cell expansion compared with published data. Toxicity was low, with no severe CRS. One-year overall and event-free survival were 63% and 46%, respectively.


Assuntos
Antígenos CD19/administração & dosagem , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Receptores de Antígenos de Linfócitos T/imunologia , Adolescente , Antígenos CD19/genética , Antígenos CD19/imunologia , Criança , Pré-Escolar , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Recidiva , Linfócitos T/patologia , Sequenciamento do Exoma , Adulto Jovem
6.
Leukemia ; 33(12): 2817-2829, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31138842

RESUMO

Subtype-specific leukemia oncogenes drive aberrant gene expression profiles that converge on common essential mediators to ensure leukemia self-renewal and inhibition of differentiation. The transcription factor c-MYB functions as one such mediator in a diverse range of leukemias. Here we show for the first time that transcriptional repression of myeloid differentiation associated c-MYB target genes in AML is enforced by the AAA+ ATPase RUVBL2. Silencing RUVBL2 expression resulted in increased binding of c-MYB to these loci and their transcriptional activation. RUVBL2 inhibition resulted in AML cell apoptosis and severely impaired disease progression of established AML in engrafted mice. In contrast, such inhibition had little impact on normal hematopoietic progenitor differentiation. These data demonstrate that RUVBL2 is essential for the oncogenic function of c-MYB in AML by governing inhibition of myeloid differentiation. They also indicate that targeting the control of c-MYB function by RUVBL2 is a promising approach to developing future anti-AML therapies.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , DNA Helicases/metabolismo , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas c-myb/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Linhagem Celular Tumoral , DNA Helicases/genética , Modelos Animais de Doenças , Progressão da Doença , Técnicas de Silenciamento de Genes , Hematopoese/genética , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Ligação Proteica , Proteínas Proto-Oncogênicas c-myb/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Pediatr Blood Cancer ; 66(8): e27787, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31034760

RESUMO

The molecular detection of minimal residual disease (MRD) is standard of care in acute lymphoblastic leukemia to personalize the stratification of patients to appropriate intensity chemotherapy regimens. High-throughput sequencing (HTS) techniques are driving changes to MRD methodologies. Our study demonstrates HTS can identify suitable diagnostic markers, even in cases where traditional screening has been unsuccessful. Markers identified by HTS were used to track MRD using standard real-time quantitative PCR. We show, with six patient examples, clinical benefits of utilizing HTS to screen diagnostic samples and its necessity when traditional screening techniques fail. This is practical evidence that current MRD diagnostic marker screening should be replaced by an HTS approach.


Assuntos
Biomarcadores Tumorais/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Prognóstico
9.
Acta Neuropathol ; 135(1): 115-129, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29058119

RESUMO

Glioneuronal tumours are an important cause of treatment-resistant epilepsy. Subtypes of tumour are often poorly discriminated by histological features and may be difficult to diagnose due to a lack of robust diagnostic tools. This is illustrated by marked variability in the reported frequencies across different epilepsy surgical series. To address this, we used DNA methylation arrays and RNA sequencing to assay the methylation and expression profiles within a large cohort of glioneuronal tumours. By adopting a class discovery approach, we were able to identify two distinct groups of glioneuronal tumour, which only partially corresponded to the existing histological classification. Furthermore, by additional molecular analyses, we were able to identify pathogenic mutations in BRAF and FGFR1, specific to each group, in a high proportion of cases. Finally, by interrogating our expression data, we were able to show that each molecular group possessed expression phenotypes suggesting different cellular differentiation: astrocytic in one group and oligodendroglial in the second. Informed by this, we were able to identify CCND1, CSPG4, and PDGFRA as immunohistochemical targets which could distinguish between molecular groups. Our data suggest that the current histological classification of glioneuronal tumours does not adequately represent their underlying biology. Instead, we show that there are two molecular groups within glioneuronal tumours. The first of these displays astrocytic differentiation and is driven by BRAF mutations, while the second displays oligodendroglial differentiation and is driven by FGFR1 mutations.


Assuntos
Neoplasias Encefálicas/metabolismo , Epilepsia/metabolismo , Ganglioglioma/metabolismo , Neoplasias Neuroepiteliomatosas/metabolismo , Adolescente , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Criança , Pré-Escolar , Estudos de Coortes , Metilação de DNA , Epilepsia/genética , Epilepsia/patologia , Epilepsia/cirurgia , Feminino , Ganglioglioma/genética , Ganglioglioma/patologia , Ganglioglioma/cirurgia , Expressão Gênica , Humanos , Lactente , Masculino , Mutação , Neoplasias Neuroepiteliomatosas/genética , Neoplasias Neuroepiteliomatosas/patologia , Neoplasias Neuroepiteliomatosas/cirurgia , Fenótipo , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo
10.
J Mol Diagn ; 18(4): 494-506, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27183494

RESUMO

High-throughput sequencing (HTS) (next-generation sequencing) of the rearranged Ig and T-cell receptor genes promises to be less expensive and more sensitive than current methods of monitoring minimal residual disease (MRD) in patients with acute lymphoblastic leukemia. However, the adoption of new approaches by clinical laboratories requires careful evaluation of all potential sources of error and the development of strategies to ensure the highest accuracy. Timely and efficient clinical use of HTS platforms will depend on combining multiple samples (multiplexing) in each sequencing run. Here we examine the Ig heavy-chain gene HTS on the Illumina MiSeq platform for MRD. We identify errors associated with multiplexing that could potentially impact the accuracy of MRD analysis. We optimize a strategy that combines high-purity, sequence-optimized oligonucleotides, dual indexing, and an error-aware demultiplexing approach to minimize errors and maximize sensitivity. We present a probability-based, demultiplexing pipeline Error-Aware Demultiplexer that is suitable for all MiSeq strategies and accurately assigns samples to the correct identifier without excessive loss of data. Finally, using controls quantified by digital PCR, we show that HTS-MRD can accurately detect as few as 1 in 10(6) copies of specific leukemic MRD.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Reação em Cadeia da Polimerase Multiplex , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética , Biologia Computacional/métodos , Humanos , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software
11.
Br J Haematol ; 174(2): 275-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27061724

RESUMO

Using immunohistochemistry and flow cytometry to define phases of the cell cycle, this study shows that a high proportion of acute myeloid leukaemia (AML) blasts obtained from trephine biopsies are cycling, whereas >95% of peripheral blood-derived blasts are arrested in G1 . Results obtained from bone marrow aspirates are more similar to those from blood rather than from trephine biopsies. These differences were confirmed by gene expression profiling in a patient with high count AML. This has implications for cell cycle and other biological studies using aspirates rather than trephine biopsies and for the use of cell mobilising agents before chemotherapy.


Assuntos
Crise Blástica/patologia , Ciclo Celular , Leucemia Mieloide Aguda/patologia , Adulto , Idoso , Biópsia , Células da Medula Óssea/patologia , Pontos de Checagem do Ciclo Celular , Feminino , Fase G1 , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/patologia , Trepanação
12.
Clin Infect Dis ; 60(6): 881-8, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25572899

RESUMO

BACKGROUND: An 18-month-old boy developed encephalopathy, for which extensive investigation failed to identify an etiology, 6 weeks after stem cell transplant. To exclude a potential infectious cause, we performed high-throughput RNA sequencing on brain biopsy. METHODS: RNA-Seq was performed on an Illumina Miseq, generating 20 million paired-end reads. Nonhost data were checked for similarity to known organisms using BLASTx. The full viral genome was sequenced by primer walking. RESULTS: We identified an astrovirus, HAstV-VA1/HMO-C-UK1(a), which was highly divergent from human astrovirus (HAstV 1-8) genotypes, but closely related to VA1/HMO-C astroviruses, including one recovered from a case of fatal encephalitis in an immunosuppressed child. The virus was detected in stool and serum, with highest levels in brain and cerebrospinal fluid (CSF). Immunohistochemistry of the brain biopsy showed positive neuronal staining. A survey of 680 stool and 349 CSF samples identified a related virus in the stool of another immunosuppressed child. CONCLUSIONS: The discovery of HAstV-VA1/HMO-C-UK1(a) as the cause of encephalitis in this case provides further evidence that VA1/HMO-C viruses, unlike HAstV 1-8, are neuropathic, particularly in immunocompromised patients, and should be considered in the differential diagnosis of encephalopathy. With a turnaround from sample receipt to result of <1 week, we confirm that RNA-Seq presents a valuable diagnostic tool in unexplained encephalitis.


Assuntos
Infecções por Astroviridae/virologia , Encéfalo/patologia , Encefalite Viral/diagnóstico , Encefalite Viral/patologia , Hospedeiro Imunocomprometido , Mamastrovirus/patogenicidade , Infecções por Astroviridae/diagnóstico , Infecções por Astroviridae/patologia , Sequência de Bases , Biópsia , Encéfalo/ultraestrutura , Encefalite Viral/virologia , Fezes/virologia , Genoma Viral , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Mamastrovirus/genética , Mamastrovirus/isolamento & purificação , Filogenia , Prevalência , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Análise de Sequência de RNA , Transplante de Células-Tronco
13.
PLoS One ; 9(5): e96531, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24810334

RESUMO

BACKGROUND: Li-Fraumeni syndrome is caused by germline TP53 mutations and is clinically characterized by a predisposition to a range of cancers, most commonly sarcoma, brain tumours and leukemia. Pathogenic mosaic TP53 mutations have only rarely been described. METHODS AND FINDINGS: We describe a 2 years old child presenting with three separate cancers over a 6 month period; two soft tissue mesenchymal tumors and an aggressive metastatic neuroblastoma. As conventional testing of blood DNA by Sanger sequencing for mutations in TP53, ALK, and SDH was negative, whole exome sequencing of the blood DNA of the patient and both parents was performed to screen more widely for cancer predisposing mutations. In the patient's but not the parents' DNA we found a c.743 G>A, p.Arg248Gln (CCDS11118.1) TP53 mutation in 3-20% of sequencing reads, a level that would not generally be detectable by Sanger sequencing. Homozygosity for this mutation was detected in all tumor samples analyzed, and germline mosaicism was demonstrated by analysis of the child's newborn blood spot DNA. The occurrence of separate tumors derived from different germ layers suggests that this de novo mutation occurred early in embryogenesis, prior to gastrulation. CONCLUSION: The case demonstrates pathogenic mosaicim, detected by next generation deep sequencing, that arose in the early stages of embryogenesis.


Assuntos
Mutação em Linhagem Germinativa , Síndrome de Li-Fraumeni/genética , Proteína Supressora de Tumor p53/genética , Pré-Escolar , Análise Mutacional de DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino
14.
Can J Anaesth ; 52(6): 630-3, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15983151

RESUMO

PURPOSE: We report two cases where the ProSeal laryngeal mask airway (PLMA) was successfully used as a rescue device, after failed tracheal intubation, during rapid sequence induction. CLINICAL FINDINGS: The first case involved a 31-yr-old primigravida presenting for emergency Cesarean section for severe fetal distress. She had a grade 3 larynx and airway edema was observed during laryngoscopy. Attempts with a McCoy blade and gum elastic bougie failed to secure the airway. A size 4 PLMA was inserted with good airway control and surgery proceeded uneventfully. The second case involved a 51-yr-old man presenting for appendectomy. Following failed attempts at intubation, a size 5 PLMA was successful in securing his airway and surgery proceeded uneventfully. CONCLUSIONS: The correctly placed PLMA has potential advantages over the cLMA for airway rescue in the circumstance of failed emergency intubation in a patient with a potentially full stomach. In the two cases reported, the PLMA provided effective rescue of the airway.


Assuntos
Anestesia por Inalação , Intubação Intratraqueal , Máscaras Laríngeas , Adulto , Obstrução das Vias Respiratórias/complicações , Anestesia Obstétrica , Apendicectomia , Cesárea , Feminino , Humanos , Laringoscopia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA