Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 24(7): 1883-97, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25468678

RESUMO

Transgenic mouse models expressing mutant superoxide dismutase 1 (SOD1) have been critical in furthering our understanding of amyotrophic lateral sclerosis (ALS). However, such models generally overexpress the mutant protein, which may give rise to phenotypes not directly relevant to the disorder. Here, we have analysed a novel mouse model that has a point mutation in the endogenous mouse Sod1 gene; this mutation is identical to a pathological change in human familial ALS (fALS) which results in a D83G change in SOD1 protein. Homozgous Sod1(D83G/D83G) mice develop progressive degeneration of lower (LMN) and upper motor neurons, likely due to the same unknown toxic gain of function as occurs in human fALS cases, but intriguingly LMN cell death appears to stop in early adulthood and the mice do not become paralyzed. The D83 residue coordinates zinc binding, and the D83G mutation results in loss of dismutase activity and SOD1 protein instability. As a result, Sod1(D83G/D83G) mice also phenocopy the distal axonopathy and hepatocellular carcinoma found in Sod1 null mice (Sod1(-/-)). These unique mice allow us to further our understanding of ALS by separating the central motor neuron body degeneration and the peripheral effects from a fALS mutation expressed at endogenous levels.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Mutação Puntual , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/enzimologia , Mutação de Sentido Incorreto , Superóxido Dismutase/metabolismo , Superóxido Dismutase/toxicidade , Superóxido Dismutase-1
2.
Science ; 344(6179): 94-7, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24700859

RESUMO

Damage to the central nervous system caused by traumatic injury or neurological disorders can lead to permanent loss of voluntary motor function and muscle paralysis. Here, we describe an approach that circumvents central motor circuit pathology to restore specific skeletal muscle function. We generated murine embryonic stem cell-derived motor neurons that express the light-sensitive ion channel channelrhodopsin-2, which we then engrafted into partially denervated branches of the sciatic nerve of adult mice. These engrafted motor neurons not only reinnervated lower hind-limb muscles but also enabled their function to be restored in a controllable manner using optogenetic stimulation. This synthesis of regenerative medicine and optogenetics may be a successful strategy to restore muscle function after traumatic injury or disease.


Assuntos
Luz , Neurônios Motores/fisiologia , Neurônios Motores/transplante , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Optogenética , Animais , Axônios/fisiologia , Linhagem Celular , Channelrhodopsins , Estimulação Elétrica , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Feminino , Membro Posterior , Contração Isométrica , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/citologia , Denervação Muscular , Fibras Musculares Esqueléticas/fisiologia , Regeneração Nervosa , Nervo Isquiático/fisiologia , Transfecção , Transgenes
3.
J Biol Chem ; 285(24): 18627-39, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20382740

RESUMO

Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal late-onset neurodegenerative disease. Familial cases of ALS (FALS) constitute approximately 10% of all ALS cases, and mutant superoxide dismutase 1 (SOD1) is found in 15-20% of FALS. SOD1 mutations confer a toxic gain of unknown function to the protein that specifically targets the motor neurons in the cortex and the spinal cord. We have previously shown that the autosomal dominant Legs at odd angles (Loa) mutation in cytoplasmic dynein heavy chain (Dync1h1) delays disease onset and extends the life span of transgenic mice harboring human mutant SOD1(G93A). In this study we provide evidence that despite the lack of direct interactions between mutant SOD1 and either mutant or wild-type cytoplasmic dynein, the Loa mutation confers significant reductions in the amount of mutant SOD1 protein in the mitochondrial matrix. Moreover, we show that the Loa mutation ameliorates defects in mitochondrial respiration and membrane potential observed in SOD1(G93A) motor neuron mitochondria. These data suggest that the Loa mutation reduces the vulnerability of mitochondria to the toxic effects of mutant SOD1, leading to improved mitochondrial function in SOD1(G93A) motor neurons.


Assuntos
Modelos Animais de Doenças , Dineínas/genética , Mitocôndrias/metabolismo , Doença dos Neurônios Motores/metabolismo , Mutação , Superóxido Dismutase/genética , Animais , Citoplasma/metabolismo , Feminino , Heterozigoto , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Superóxido Dismutase-1
4.
PLoS One ; 5(3): e9541, 2010 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-20221404

RESUMO

BACKGROUND: Since the discovery that mutations in the enzyme SOD1 are causative in human amyotrophic lateral sclerosis (ALS), many strategies have been employed to elucidate the toxic properties of this ubiquitously expressed mutant protein, including the generation of GFP-SOD1 chimaeric proteins for studies in protein localization by direct visualization using fluorescence microscopy. However, little is known about the biochemical and physical properties of these chimaeric proteins, and whether they behave similarly to their untagged SOD1 counterparts. METHODOLOGY/PRINCIPAL FINDINGS: Here we compare the physicochemical properties of SOD1 and the effects of GFP-tagging on its intracellular behaviour. Immunostaining demonstrated that SOD1 alone and GFP-SOD1 have an indistinguishable intracellular distribution in PC12 cells. Cultured primary motor neurons expressing GFP or GFP-SOD1 showed identical patterns of cytoplasmic expression and of movement within the axon. However, GFP tagging of SOD1 was found to alter some of the intrinsic properties of SOD1, including stability and specific activity. Evaluation of wildtype and mutant SOD1, tagged at either the N- or C-terminus with GFP, in PC12 cells demonstrated that some chimaeric proteins were degraded to the individual proteins, SOD1 and GFP. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that most, but not all, properties of SOD1 remain the same with a GFP tag.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Regulação Enzimológica da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Superóxido Dismutase/metabolismo , Animais , Dicroísmo Circular , Dimerização , Variação Genética , Humanos , Neurônios Motores/metabolismo , Mutação , Fases de Leitura Aberta , Células PC12 , Estrutura Terciária de Proteína , Ratos , Superóxido Dismutase-1
5.
PLoS One ; 4(7): e6218, 2009 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-19593442

RESUMO

BACKGROUND: In humans, mutations in the enzyme glycyl-tRNA synthetase (GARS) cause motor and sensory axon loss in the peripheral nervous system, and clinical phenotypes ranging from Charcot-Marie-Tooth neuropathy to a severe infantile form of spinal muscular atrophy. GARS is ubiquitously expressed and may have functions in addition to its canonical role in protein synthesis through catalyzing the addition of glycine to cognate tRNAs. METHODOLOGY/PRINCIPAL FINDINGS: We have recently described a new mouse model with a point mutation in the Gars gene resulting in a cysteine to arginine change at residue 201. Heterozygous Gars(C201R/+) mice have locomotor and sensory deficits. In an investigation of genetic mutations that lead to death of motor and sensory neurons, we have crossed the Gars(C201R/+) mice to two other mutants: the TgSOD1(G93A) model of human amyotrophic lateral sclerosis and the Legs at odd angles mouse (Dync1h1(Loa)) which has a defect in the heavy chain of the dynein complex. We found the Dync1h1(Loa/+);Gars(C201R/+) double heterozygous mice are more impaired than either parent, and this is may be an additive effect of both mutations. Surprisingly, the Gars(C201R) mutation significantly delayed disease onset in the SOD1(G93A);Gars(C201R/+) double heterozygous mutant mice and increased lifespan by 29% on the genetic background investigated. CONCLUSIONS/SIGNIFICANCE: These findings raise intriguing possibilities for the study of pathogenetic mechanisms in all three mouse mutant strains.


Assuntos
Dineínas/fisiologia , Glicina-tRNA Ligase/metabolismo , Doença dos Neurônios Motores/enzimologia , Mutação , Superóxido Dismutase/metabolismo , Animais , Sequência de Bases , Primers do DNA , Modelos Animais de Doenças , Dineínas/genética , Feminino , Glicina-tRNA Ligase/genética , Heterozigoto , Masculino , Camundongos , Camundongos Mutantes , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Fenótipo , Superóxido Dismutase/genética
6.
Neurosci Lett ; 447(2-3): 172-4, 2008 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-18840504

RESUMO

Huntington's disease is an autosomal dominant neurodegenerative disorder caused by the expansion of a polyglutamine repeat tract in the huntingtin protein. Polyglutamine-expanded huntingtin forms intranuclear as well as perinuclear inclusion bodies. Perinuclear aggregates formed by polyglutamine-expanded proteins are associated with a characteristic indentation of the nuclear envelope. We examined the nuclear envelope in cells containing huntingtin aggregates using immunostaining for lamin B1, a major component of the nuclear lamina. Laser confocal microscopy analysis revealed that huntingtin aggregates in a juxtanuclear position were associated with a clear focal distortion in the nuclear envelope in cells transfected with polyglutamine-expanded huntingtin. Lamin B1 distribution was not altered by aggregates of polyglutamine-expanded ataxin-1, that are exclusively intranuclear. Thus lamin immunocytochemistry demonstrates clearly the depression of the nuclear envelope resulting from the formation of perinuclear aggregates by polyglutamine-expanded huntingtin. Lamin immunocytochemistry would be of value to monitor the state of the nuclear envelope in experimental paradigms aimed at establishing the significance of perinuclear aggregates of pathogenic proteins.


Assuntos
Lamina Tipo B/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Animais , Ataxina-1 , Ataxinas , Células CHO/ultraestrutura , Cricetinae , Cricetulus , Glutamina/metabolismo , Proteínas de Fluorescência Verde/genética , Humanos , Proteína Huntingtina , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Microscopia Confocal/métodos , Proteínas do Tecido Nervoso/genética , Membrana Nuclear/genética , Proteínas Nucleares/genética , Peptídeos/genética , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA