Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Life Sci Alliance ; 5(12)2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104080

RESUMO

Progeroid syndromes are rare genetic diseases with most of autosomal dominant transmission, the prevalence of which is less than 1/10,000,000. These syndromes caused by mutations in the <i>LMNA</i> gene encoding A-type lamins belong to a group of disorders called laminopathies. Lamins are implicated in the architecture and function of the nucleus and chromatin. Patients affected with progeroid laminopathies display accelerated aging of mesenchymal stem cells (MSCs)-derived tissues associated with nuclear morphological abnormalities. To identify pathways altered in progeroid patients' MSCs, we used induced pluripotent stem cells (hiPSCs) from patients affected with classical Hutchinson-Gilford progeria syndrome (HGPS, c.1824C&gt;T-p.G608G), HGPS-like syndrome (HGPS-L; c.1868C&gt;G-p.T623S) associated with farnesylated prelamin A accumulation, or atypical progeroid syndromes (APS; homozygous c.1583C&gt; T-p.T528M; heterozygous c.1762T&gt;C-p.C588R; compound heterozygous c.1583C&gt;T and c.1619T&gt;C-p.T528M and p.M540T) without progerin accumulation. By comparative analysis of the transcriptome and methylome of hiPSC-derived MSCs, we found that patient's MSCs display specific DNA methylation patterns and modulated transcription at early stages of differentiation. We further explored selected biological processes deregulated in the presence of <i>LMNA</i> variants and confirmed alterations of age-related pathways during MSC differentiation. In particular, we report the presence of an altered mitochondrial pattern; an increased response to double-strand DNA damage; and telomere erosion in HGPS, HGPS-L, and APS MSCs, suggesting converging pathways, independent of progerin accumulation, but a distinct DNA methylation profile in HGPS and HGPS-L compared with APS cells.


Assuntos
Senilidade Prematura , Células-Tronco Mesenquimais , Progéria , Envelhecimento/genética , Senilidade Prematura/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Progéria/metabolismo , Síndrome
2.
J Cachexia Sarcopenia Muscle ; 13(1): 621-635, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34859613

RESUMO

BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is a late-onset autosomal dominant form of muscular dystrophy involving specific groups of muscles with variable weakness that precedes inflammatory response, fat infiltration, and muscle atrophy. As there is currently no cure for this disease, understanding and modelling the typical muscle weakness in FSHD remains a major milestone towards deciphering the disease pathogenesis as it will pave the way to therapeutic strategies aimed at correcting the functional muscular defect in patients. METHODS: To gain further insights into the specificity of the muscle alteration in this disease, we derived induced pluripotent stem cells from patients affected with Types 1 and 2 FSHD but also from patients affected with Bosma arhinia and microphthalmia. We differentiated these cells into contractile innervated muscle fibres and analysed their transcriptome by RNA Seq in comparison with cells derived from healthy donors. To uncover biological pathways altered in the disease, we applied MOGAMUN, a multi-objective genetic algorithm that integrates multiplex complex networks of biological interactions (protein-protein interactions, co-expression, and biological pathways) and RNA Seq expression data to identify active modules. RESULTS: We identified 132 differentially expressed genes that are specific to FSHD cells (false discovery rate < 0.05). In FSHD, the vast majority of active modules retrieved with MOGAMUN converges towards a decreased expression of genes encoding proteins involved in sarcomere organization (P value 2.63e-12 ), actin cytoskeleton (P value 9.4e-5 ), myofibril (P value 2.19e-12 ), actin-myosin sliding, and calcium handling (with P values ranging from 7.9e-35 to 7.9e-21 ). Combined with in vivo validations and functional investigations, our data emphasize a reduction in fibre contraction (P value < 0.0001) indicating that the muscle weakness that is typical of FSHD clinical spectrum might be associated with dysfunction of calcium release (P value < 0.0001), actin-myosin interactions, motor activity, mechano-transduction, and dysfunctional sarcomere contractility. CONCLUSIONS: Identification of biomarkers of FSHD muscle remain critical for understanding the process leading to the pathology but also for the definition of readouts to be used for drug design, outcome measures, and monitoring of therapies. The different pathways identified through a system biology approach have been largely overlooked in the disease. Overall, our work opens new perspectives in the definition of biomarkers able to define the muscle alteration but also in the development of novel strategies to improve muscle function as it provides functional parameters for active molecule screening.


Assuntos
Células-Tronco Pluripotentes Induzidas , Distrofia Muscular Facioescapuloumeral , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Sarcômeros/metabolismo
3.
Biomedicines ; 9(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209568

RESUMO

Over the recent years, the SMCHD1 (Structural Maintenance of Chromosome flexible Hinge Domain Containing 1) chromatin-associated factor has triggered increasing interest after the identification of variants in three rare and unrelated diseases, type 2 Facio Scapulo Humeral Dystrophy (FSHD2), Bosma Arhinia and Microphthalmia Syndrome (BAMS), and the more recently isolated hypogonadotrophic hypogonadism (IHH) combined pituitary hormone deficiency (CPHD) and septo-optic dysplasia (SOD). However, it remains unclear why certain mutations lead to a specific muscle defect in FSHD while other are associated with severe congenital anomalies. To gain further insights into the specificity of SMCHD1 variants and identify pathways associated with the BAMS phenotype and related neural crest defects, we derived induced pluripotent stem cells from patients carrying a mutation in this gene. We differentiated these cells in neural crest stem cells and analyzed their transcriptome by RNA-Seq. Besides classical differential expression analyses, we analyzed our data using MOGAMUN, an algorithm allowing the extraction of active modules by integrating differential expression data with biological networks. We found that in BAMS neural crest cells, all subnetworks that are associated with differentially expressed genes converge toward a predominant role for AKT signaling in the control of the cell proliferation-migration balance. Our findings provide further insights into the distinct mechanism by which defects in neural crest migration might contribute to the craniofacial anomalies in BAMS.

4.
Oncotarget ; 8(34): 57451-57459, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28924457

RESUMO

Approximately 30% of the patients who fulfil the criteria of Waldenström's macroglobulinemia (WM) are diagnosed while asymptomatic (indolent), and will not require immediate therapy. Conversely, patients with a disease-related event will be considered for therapy. The physiopathology of these 2 groups remains unclear, and the mechanisms of progression from indolent to symptomatic WM have yet to be fully understood. Seventeen patients diagnosed with WM were included in this study, 8 asymptomatic WM (A-WM) and 9 symptomatic WM (S-WM). A differential analysis was performed on a first series of 11 patients and identified 48 genes whose expression separated samples from A- to S-WM. This gene signature was then confirmed on a second independent validation set of 6 WM. Within this expression profile, BACH2, a B-cell transcription factor known to be a tumor suppressor gene, was found to be over-expressed in A-MW relatively to S-MW. We specifically over-expressed BACH2 in a WM-related cell line and observed a significant reduction of the clonogenic activity. To the best of our knowledge, we report for the first time a specific gene expression signature that differentiates A-WM and S-WM. Within this expression profile, BACH2 was identified as a candidate gene that may help to understand better the behavior of tumor cells in indolent WM.

5.
Mol Ther Nucleic Acids ; 2: e116, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23962900

RESUMO

We took advantage of the ability of human telomeres to silence neighboring genes (telomere position effect or TPE) to design a high-throughput screening assay for drugs altering telomeres. We identified, for the first time, that two dietary flavones, acacetin and chrysin, are able to specifically alleviate TPE in human cells. We further investigated their influence on telomere integrity and showed that both drugs drastically deprotect telomeres against DNA damage response. However, telomere deprotection triggered by shelterin dysfunction does not affect TPE, indicating that acacetin and chrysin target several functions of telomeres. These results show that TPE-based screening assays represent valuable methods to discover new compounds targeting telomeres.Molecular Therapy-Nucleic Acids (2013) 2, e116; doi:10.1038/mtna.2013.42; published online 20 August 2013.

6.
Am J Hematol ; 88(11): 948-54, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23861223

RESUMO

SNP array (SNPa) was developed to detect copy number alteration (CNA) and loss of heterozygosity (LOH) without copy number changes, CN-LOH. We aimed to identify novel genomic aberrations using SNPa in 31 WM with paired samples. Methylation status and mutation were analyzed on target genes. A total of 61 genetic aberrations were observed, 58 CNA (33 gains, 25 losses) in 58% of patients and CN-LOH in 6% of patients. The CNA were widely distributed throughout the genome, including 12 recurrent regions and identified new cryptic clonal chromosomal lesions that were mapped. Gene set expression analysis demonstrated a relationship between either deletion 6q or gain of chromosome 4 and alteration of gene expression profiling. We then studied methylation status and sought for mutations in altered regions on target genes. We observed methylation of DLEU7 on chromosome 13 in all patients (n = 12) with WM, and mutations of CD79B/CD79A genes (17q region), a key component of the BCR pathway, in 15% of cases. Most importantly, higher frequency of ≥3 CNA was observed in symptomatic WM. In conclusion, this study expands the view of the genomic complexity of WM, especially in symptomatic WM, including a potentially new mechanism of gene dysfunction, acquired uniparental disomy/CN-LOH. Finally, we have identified new potential target genes in WM, such as DLEU7 and CD79A/B.


Assuntos
Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Metilação de DNA , Regulação da Expressão Gênica , Perda de Heterozigosidade , Mutação , Macroglobulinemia de Waldenstrom/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD79/genética , Antígenos CD79/metabolismo , Deleção Cromossômica , Duplicação Cromossômica , Estudos de Coortes , Feminino , França , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Macroglobulinemia de Waldenstrom/metabolismo
7.
Clin Lymphoma Myeloma Leuk ; 11(1): 106-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21454205

RESUMO

Single-nucleotide polymorphism array (SNPa) and array-based comparative genomic hybridization (aCGH) are among the most sensitive genomic high-throughput screening techniques used in the exploration of genetic abnormalities in Waldenström's macroglobulinemia (WM). SNP and aCGH allow the identification of copy number abnormalities (CNA) at the kilobase level thus identifying cryptic genetic abnormalities unseen by lower-resolution approaches such as conventional cytogenetic or fluorescence in situ hybridization (FISH). CNA were identified in nearly 80% of cases by aCGH that delineated in addition minimal altered regions. At gene level, remarkable findings affecting genes involved in the regulation of the NF-kB signaling pathways were identified, such as biallelic inactivation of TNFAIP3 and TRAF3. SNPa also allowed characterization of copy neutral losses such as uniparental disomies (UPD), which is an important and frequent mechanism of gene alteration in cancer cells. Herein, we summarize the current knowledge of WM genomic basis using these high-throughput techniques.


Assuntos
Macroglobulinemia de Waldenstrom/genética , Hibridização Genômica Comparativa , Feminino , Genoma Humano , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Análise Serial de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA