Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0299665, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512906

RESUMO

Reversible S-palmitoylation of protein cysteines, catalysed by a family of integral membrane zDHHC-motif containing palmitoyl acyl transferases (zDHHC-PATs), controls the localisation, activity, and interactions of numerous integral and peripheral membrane proteins. There are compelling reasons to want to inhibit the activity of individual zDHHC-PATs in both the laboratory and the clinic, but the specificity of existing tools is poor. Given the extensive conservation of the zDHHC-PAT active site, development of isoform-specific competitive inhibitors is highly challenging. We therefore hypothesised that proteolysis-targeting chimaeras (PROTACs) may offer greater specificity to target this class of enzymes. In proof-of-principle experiments we engineered cell lines expressing tetracycline-inducible Halo-tagged zDHHC5 or zDHHC20, and evaluated the impact of Halo-PROTACs on zDHHC-PAT expression and substrate palmitoylation. In HEK-derived FT-293 cells, Halo-zDHHC5 degradation significantly decreased palmitoylation of its substrate phospholemman, and Halo-zDHHC20 degradation significantly diminished palmitoylation of its substrate IFITM3, but not of the SARS-CoV-2 spike protein. In contrast, in a second kidney derived cell line, Vero E6, Halo-zDHHC20 degradation did not alter palmitoylation of either IFITM3 or SARS-CoV-2 spike. We conclude from these experiments that PROTAC-mediated targeting of zDHHC-PATs to decrease substrate palmitoylation is feasible. However, given the well-established degeneracy in the zDHHC-PAT family, in some settings the activity of non-targeted zDHHC-PATs may substitute and preserve substrate palmitoylation.


Assuntos
Aciltransferases , Lipoilação , Humanos , Aciltransferases/genética , Aciltransferases/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Linhagem Celular , Proteínas de Membrana/metabolismo , Proteínas de Ligação a RNA/metabolismo
2.
FASEB J ; 38(5): e23535, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466300

RESUMO

Caveolae are small flask-shaped invaginations of the surface membrane which are proposed to recruit and co-localize signaling molecules. The distinctive caveolar shape is achieved by the oligomeric structural protein caveolin, of which three isoforms exist. Aside from the finding that caveolin-3 is specifically expressed in muscle, functional differences between the caveolin isoforms have not been rigorously investigated. Caveolin-3 is relatively cysteine-rich compared to caveolins 1 and 2, so we investigated its cysteine post-translational modifications. We find that caveolin-3 is palmitoylated at 6 cysteines and becomes glutathiolated following redox stress. We map the caveolin-3 palmitoylation sites to a cluster of cysteines in its C terminal membrane domain, and the glutathiolation site to an N terminal cysteine close to the region of caveolin-3 proposed to engage in protein interactions. Glutathiolation abolishes caveolin-3 interaction with heterotrimeric G protein alpha subunits. Our results indicate that a caveolin-3 oligomer contains up to 66 palmitates, compared to up to 33 for caveolin-1. The additional palmitoylation sites in caveolin-3 therefore provide a mechanistic basis by which caveolae in smooth and striated muscle can possess unique phospholipid and protein cargoes. These unique adaptations of the muscle-specific caveolin isoform have important implications for caveolar assembly and signaling.


Assuntos
Caveolina 3 , Cisteína , Músculo Esquelético , Processamento de Proteína Pós-Traducional , Isoformas de Proteínas
3.
Cell Rep ; 43(2): 113679, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38236777

RESUMO

Phospholemman (PLM) regulates the cardiac sodium pump: PLM phosphorylation activates the pump whereas PLM palmitoylation inhibits its activity. Here, we show that the anti-oxidant protein peroxiredoxin 6 (Prdx6) interacts with and depalmitoylates PLM in a glutathione-dependent manner. Glutathione loading cells acutely reduce PLM palmitoylation; glutathione depletion significantly increases PLM palmitoylation. Prdx6 silencing abolishes these effects, suggesting that PLM can be depalmitoylated by reduced Prdx6. In vitro, only recombinant Prdx6, among several peroxiredoxin isoforms tested, removes palmitic acid from recombinant palmitoylated PLM. The broad-spectrum depalmitoylase inhibitor palmostatin B prevents Prdx6-dependent PLM depalmitoylation in cells and in vitro. Our data suggest that Prdx6 is a thioesterase that can depalmitoylate proteins by nucleophilic attack via its reactive thiol, linking PLM palmitoylation and hence sodium pump activity to cellular glutathione status. We show that protein depalmitoylation can occur via a catalytic cysteine in which substrate specificity is determined by a protein-protein interaction.


Assuntos
Peroxirredoxina VI , Fosfoproteínas , ATPase Trocadora de Sódio-Potássio , Proteínas de Membrana , Glutationa
4.
Intern Emerg Med ; 18(5): 1359-1371, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37249753

RESUMO

Electronic cigarette (EC) aerosol emissions generally contain fewer and lower concentrations of harmful and potentially harmful constituents, compared with cigarette smoke. Further studies are needed to establish whether decreased emissions translate to reduced health risks for EC users. In a cross-sectional study, biomarkers of exposure (BoE) to certain tobacco smoke toxicants and biomarkers of potential harm (BoPH), associated with biological processes linked to the potential development of smoking-related diseases and oxidative stress, were assessed in solus Vuse ECs users and current, former, and never smokers. In total, 213 participants were enrolled, and smoking status was confirmed by urinary cotinine, exhaled carbon monoxide, and N-(2-cyanoethyl)valine levels (EC users and former smokers only). During confinement participants used their usual product (EC or cigarette) as normal and BoE and BoPHs were assessed via blood, 24-h urine, and physiological assessment. Significantly lower levels of all urinary BoE; MHBMA, HMPMA, 3-HPMA, NNN, 3-OH-B[a]P, S-PMA, NNAL (all p < 0.0001), and TNeq (p = 0.0074) were observed in EC users when compared with smokers. Moreover, significantly lower levels were observed in EC users for 3 of the 7 BoPH measured, carboxyhaemoglobin (p < 0.0001), soluble intercellular adhesion molecule-1 (p = 0.0028), and 11-dehydrothromboxane B2 (p = 0.0012), when compared with smokers. As compared with smokers, solus Vuse EC users have significantly lower exposure to tobacco toxicants for the BoE, and 3 BoPH measured. These results add to the weight of evidence supporting EC as part of a tobacco harm reduction strategy.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Humanos , Fumantes , Estudos Transversais , Biomarcadores
5.
Front Physiol ; 14: 1163339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123274

RESUMO

The sinoatrial node (SAN) and subsidiary pacemakers in the cardiac conduction system generate spontaneous electrical activity which is indispensable for electrical and therefore contractile function of the heart. The hyperpolarisation-activated cyclic nucleotide-gated channel HCN4 is responsible for genesis of the pacemaker "funny" current during diastolic depolarisation. S-palmitoylation, the reversible conjugation of the fatty acid palmitate to protein cysteine sulfhydryls, regulates the activity of key cardiac Na+ and Ca2+ handling proteins, influencing their membrane microdomain localisation and function. We investigated HCN4 palmitoylation and its functional consequences in engineered human embryonic kidney 293T cells as well as endogenous HCN4 in neonatal rat ventricular myocytes. HCN4 was palmitoylated in all experimental systems investigated. We mapped the HCN4 palmitoylation sites to a pair of cysteines in the HCN4 intracellular amino terminus. A double cysteine-to-alanine mutation CC93A/179AA of full length HCN4 caused a ∼67% reduction in palmitoylation in comparison to wild type HCN4. We used whole-cell patch clamp to evaluate HCN4 current (IHCN4) in stably transfected 293T cells. Removal of the two N-terminal palmitoylation sites did not significantly alter half maximal activation voltage of IHCN4 or the activation slope factor. IHCN4 was significantly larger in cells expressing wild type compared to non-palmitoylated HCN4 across a range of voltages. Phylogenetic analysis revealed that although cysteine 93 is widely conserved across all classes of HCN4 vertebrate orthologs, conservation of cysteine 179 is restricted to placental mammals. Collectively, we provide evidence for functional regulation of HCN4 via palmitoylation of its amino terminus in vertebrates. We suggest that by recruiting the amino terminus to the bilayer, palmitoylation enhances the magnitude of HCN4-mediated currents, but does not significantly affect the kinetics.

6.
Cell Calcium ; 106: 102639, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36027648

RESUMO

The bifunctional cation channel/kinase TrpM7 is ubiquitously expressed and regulates embryonic development and pathogenesis of several common diseases. The TrpM7 integral membrane ion channel domain regulates transmembrane movement of divalent cations, and its kinase domain controls gene expression via histone phosphorylation. Mechanisms regulating TrpM7 are elusive. It exists in two populations in the cell: at the cell surface where it controls divalent cation fluxes, and in intracellular vesicles where it controls zinc uptake and release. Here we report that TrpM7 is palmitoylated at a cluster of cysteines at the C terminal end of its Trp domain. Palmitoylation controls the exit of TrpM7 from the endoplasmic reticulum and the distribution of TrpM7 between cell surface and intracellular pools. Using the Retention Using Selective Hooks (RUSH) system, we demonstrate that palmitoylated TrpM7 traffics from the Golgi to the surface membrane whereas non-palmitoylated TrpM7 is sequestered in intracellular vesicles. We identify the Golgi-resident enzyme zDHHC17 and surface membrane-resident enzyme zDHHC5 as responsible for palmitoylating TrpM7 and find that TrpM7-mediated transmembrane calcium uptake is significantly reduced when TrpM7 is not palmitoylated. The closely related channel/kinase TrpM6 is also palmitoylated on the C terminal side of its Trp domain. Our findings demonstrate that palmitoylation controls ion channel activity of TrpM7 and that TrpM7 trafficking is dependant on its palmitoylation. We define a new mechanism for post translational modification and regulation of TrpM7 and other Trps.


Assuntos
Lipoilação , Canais de Cátion TRPM , Cálcio/metabolismo , Cátions/metabolismo , Fosforilação , Transdução de Sinais , Canais de Cátion TRPM/metabolismo
7.
Cancer Res ; 82(6): 1140-1152, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35078817

RESUMO

AZD6738 (ceralasertib) is a potent and selective orally bioavailable inhibitor of ataxia telangiectasia and Rad3-related (ATR) kinase. ATR is activated in response to stalled DNA replication forks to promote G2-M cell-cycle checkpoints and fork restart. Here, we found AZD6738 modulated CHK1 phosphorylation and induced ATM-dependent signaling (pRAD50) and the DNA damage marker γH2AX. AZD6738 inhibited break-induced replication and homologous recombination repair. In vitro sensitivity to AZD6738 was elevated in, but not exclusive to, cells with defects in the ATM pathway or that harbor putative drivers of replication stress such as CCNE1 amplification. This translated to in vivo antitumor activity, with tumor control requiring continuous dosing and free plasma exposures, which correlated with induction of pCHK1, pRAD50, and γH2AX. AZD6738 showed combinatorial efficacy with agents associated with replication fork stalling and collapse such as carboplatin and irinotecan and the PARP inhibitor olaparib. These combinations required optimization of dose and schedules in vivo and showed superior antitumor activity at lower doses compared with that required for monotherapy. Tumor regressions required at least 2 days of daily dosing of AZD6738 concurrent with carboplatin, while twice daily dosing was required following irinotecan. In a BRCA2-mutant patient-derived triple-negative breast cancer (TNBC) xenograft model, complete tumor regression was achieved with 3 to5 days of daily AZD6738 per week concurrent with olaparib. Increasing olaparib dosage or AZD6738 dosing to twice daily allowed complete tumor regression even in a BRCA wild-type TNBC xenograft model. These preclinical data provide rationale for clinical evaluation of AZD6738 as a monotherapy or combinatorial agent. SIGNIFICANCE: This detailed preclinical investigation, including pharmacokinetics/pharmacodynamics and dose-schedule optimizations, of AZD6738/ceralasertib alone and in combination with chemotherapy or PARP inhibitors can inform ongoing clinical efforts to treat cancer with ATR inhibitors.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carboplatina , Humanos , Indóis , Irinotecano , Morfolinas/farmacologia , Ftalazinas , Piperazinas , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Sulfóxidos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
8.
Commun Biol ; 3(1): 411, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737405

RESUMO

Although palmitoylation regulates numerous cellular processes, as yet efforts to manipulate this post-translational modification for therapeutic gain have proved unsuccessful. The Na-pump accessory sub-unit phospholemman (PLM) is palmitoylated by zDHHC5. Here, we show that PLM palmitoylation is facilitated by recruitment of the Na-pump α sub-unit to a specific site on zDHHC5 that contains a juxtamembrane amphipathic helix. Site-specific palmitoylation and GlcNAcylation of this helix increased binding between the Na-pump and zDHHC5, promoting PLM palmitoylation. In contrast, disruption of the zDHHC5-Na-pump interaction with a cell penetrating peptide reduced PLM palmitoylation. Our results suggest that by manipulating the recruitment of specific substrates to particular zDHHC-palmitoyl acyl transferases, the palmitoylation status of individual proteins can be selectively altered, thus opening the door to the development of molecular modulators of protein palmitoylation for the treatment of disease.


Assuntos
Acetiltransferases/genética , Aciltransferases/genética , Lipoilação/genética , Proteínas de Membrana/genética , Fosfoproteínas/genética , Animais , Membrana Celular/genética , Peptídeos Penetradores de Células/genética , Humanos , Camundongos , Fosforilação/genética , Processamento de Proteína Pós-Traducional/genética , Ratos , ATPase Trocadora de Sódio-Potássio/genética , Especificidade por Substrato/genética
9.
PLoS Pathog ; 16(6): e1008455, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32544189

RESUMO

The parasitic protozoan Leishmania requires proteasomal, autophagic and lysosomal proteolytic pathways to enact the extensive cellular remodelling that occurs during its life cycle. The proteasome is essential for parasite proliferation, yet little is known about the requirement for ubiquitination/deubiquitination processes in growth and differentiation. Activity-based protein profiling of L. mexicana C12, C19 and C65 deubiquitinating cysteine peptidases (DUBs) revealed DUB activity remains relatively constant during differentiation of procyclic promastigote to amastigote. However, when life cycle phenotyping (bar-seq) was performed on a pool including 15 barcoded DUB null mutants created in promastigotes using CRISPR-Cas9, significant loss of fitness was observed during differentiation and intracellular infection. DUBs 4, 7, and 13 are required for successful transformation from metacyclic promastigote to amastigote and DUBs 3, 5, 6, 8, 10, 11 and 14 are required for normal amastigote proliferation in mice. DUBs 1, 2, 12 and 16 are essential for promastigote viability and the essential role of DUB2 in establishing infection was demonstrated using DiCre inducible gene deletion in vitro and in vivo. DUB2 is found in the nucleus and interacts with nuclear proteins associated with transcription/chromatin dynamics, mRNA splicing and mRNA capping. DUB2 has broad linkage specificity, cleaving all the di-ubiquitin chains except for Lys27 and Met1. Our study demonstrates the crucial role that DUBs play in differentiation and intracellular survival of Leishmania and that amastigotes are exquisitely sensitive to disruption of ubiquitination homeostasis.


Assuntos
Ciclo Celular , Enzimas Desubiquitinantes/metabolismo , Leishmania mexicana/enzimologia , Proteínas de Protozoários/metabolismo , Ubiquitinação , Animais , Enzimas Desubiquitinantes/genética , Feminino , Deleção de Genes , Leishmania mexicana/genética , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/genética
10.
Biochimie ; 166: 150-160, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31472179

RESUMO

Leishmania mexicana is one of the causative agents of cutaneous leishmaniasis in humans. There is an urgent need to identify new drug targets to combat the disease. Cysteine peptidases play crucial role in pathogenicity and virulence in Leishmania spp. and are promising targets for developing new anti-leishmanial drugs. Genetic drug target validation has been performed on a number of cysteine peptidases, but others have yet to be characterized. We targeted 16 L. mexicana cysteine peptidases for gene deletion and tagging using CRISPR-Cas9 in order to identify essential genes and ascertain their cellular localization. Our analysis indicates that two clan CA, family C2 calpains (LmCAL27.1, LmCAL31.6) and clan CD, family C11 PNT1 are essential for survival in the promastigote stage. The other peptidases analysed, namely calpains LmCAL4.1, LmCAL25.1, and members of clan CA C51, C78, C85 and clan CP C97 were found to be non-essential. We generated a gene deletion mutant (Δpnt1) which was severely compromised in its cell growth and a conditional gene deletion mutant of PNT1 (Δpnt1: PNT1flox/Δ pnt1:HYG [SSU DiCRE]). PNT1 localizes to distinct foci on the flagellum and on the surface of the parasite. The conditional gene deletion of PNT1 induced blebs and pits on the cell surface and eventual cell death. Over-expression of PNT1, but not an active site mutant PNT1C134A, was lethal, suggesting that active PNT1 peptidase is required for parasite survival. Overall, our data suggests that PNT1 is an essential gene and one of a number of cysteine peptidases that are potential drug targets in Leishmania.


Assuntos
Cisteína Endopeptidases/genética , Cisteína Endopeptidases/fisiologia , Leishmania mexicana/enzimologia , Leishmaniose Cutânea/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Deleção de Genes , Genes Essenciais , Humanos , Leishmania mexicana/genética , Leishmania mexicana/patogenicidade , Virulência/genética
11.
Gynecol Surg ; 14(1): 15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28890677

RESUMO

The multidisciplinary team (MDT) is considered good practice in the management of chronic conditions and is now a well-established part of clinical care in the NHS. There has been a recent drive to have MDTs in the management of women with severe endometriosis requiring complex surgery as a result of recommendations from the European Society for Human Reproduction and Embryology (ESHRE) and British Society for Gynaecological Endoscopy (BSGE). The multidisciplinary approach to the management of patients with endometriosis leads to better results in patient outcomes; however, there are potentially a number of barriers to its implementation and maintenance. This paper aims to review the potential benefits, disadvantages and barriers of the multidisciplinary team in the management of severe endometriosis.

12.
J Biol Chem ; 291(18): 9492-500, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26940875

RESUMO

The structure of a C11 peptidase PmC11 from the gut bacterium, Parabacteroides merdae, has recently been determined, enabling the identification and characterization of a C11 orthologue, PNT1, in the parasitic protozoon Trypanosoma brucei. A phylogenetic analysis identified PmC11 orthologues in bacteria, archaea, Chromerids, Coccidia, and Kinetoplastida, the latter being the most divergent. A primary sequence alignment of PNT1 with clostripain and PmC11 revealed the position of the characteristic His-Cys catalytic dyad (His(99) and Cys(136)), and an Asp (Asp(134)) in the potential S1 binding site. Immunofluorescence and cryoelectron microscopy revealed that PNT1 localizes to the kinetoplast, an organelle containing the mitochondrial genome of the parasite (kDNA), with an accumulation of the protein at or near the antipodal sites. Depletion of PNT1 by RNAi in the T. brucei bloodstream form was lethal both in in vitro culture and in vivo in mice and the induced population accumulated cells lacking a kinetoplast. In contrast, overexpression of PNT1 led to cells having mislocated kinetoplasts. RNAi depletion of PNT1 in a kDNA independent cell line resulted in kinetoplast loss but was viable, indicating that PNT1 is required exclusively for kinetoplast maintenance. Expression of a recoded wild-type PNT1 allele, but not of an active site mutant restored parasite viability after induction in vitro and in vivo confirming that the peptidase activity of PNT1 is essential for parasite survival. These data provide evidence that PNT1 is a cysteine peptidase that is required exclusively for maintenance of the trypanosome kinetoplast.


Assuntos
Alelos , Cisteína Proteases , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas de Protozoários , Trypanosoma brucei brucei , Animais , Domínio Catalítico , Cisteína Proteases/biossíntese , Cisteína Proteases/química , Cisteína Proteases/genética , Camundongos , Proteínas de Protozoários/biossíntese , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética
13.
Mol Microbiol ; 100(6): 931-44, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26991545

RESUMO

Leishmania mexicana has a large family of cyclin-dependent kinases (CDKs) that reflect the complex interplay between cell cycle and life cycle progression. Evidence from previous studies indicated that Cdc2-related kinase 3 (CRK3) in complex with the cyclin CYC6 is a functional homologue of the major cell cycle regulator CDK1, yet definitive genetic evidence for an essential role in parasite proliferation is lacking. To address this, we have implemented an inducible gene deletion system based on a dimerised Cre recombinase (diCre) to target CRK3 and elucidate its role in the cell cycle of L. mexicana. Induction of diCre activity in promastigotes with rapamycin resulted in efficient deletion of floxed CRK3, resulting in G2/M growth arrest. Co-expression of a CRK3 transgene during rapamycin-induced deletion of CRK3 resulted in complementation of growth, whereas expression of an active site CRK3(T178E) mutant did not, showing that protein kinase activity is crucial for CRK3 function. Inducible deletion of CRK3 in stationary phase promastigotes resulted in attenuated growth in mice, thereby confirming CRK3 as a useful therapeutic target and diCre as a valuable new tool for analyzing essential genes in Leishmania.


Assuntos
Leishmania mexicana/citologia , Leishmania mexicana/genética , Proteínas Proto-Oncogênicas c-crk/genética , Proteínas Proto-Oncogênicas c-crk/metabolismo , Sequência de Aminoácidos , Animais , Proteína Quinase CDC2/metabolismo , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Deleção de Genes , Integrases/genética , Integrases/metabolismo , Leishmania mexicana/enzimologia , Leishmaniose Cutânea/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Genética Reversa/métodos , Sirolimo/farmacologia
14.
Subst Abus ; 33(2): 156-67, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22489588

RESUMO

Heterogeneous classes of comorbid trajectories of tobacco and marijuana use were examined in order to determine how they are related to subsequent antisocial behavior, poor self-control, and internalizing behavior. Data are from a 4-wave longitudinal study of African American (n = 243) and Puerto Rican (n = 232) adolescents and adults in the community. Logistic regression analyses were employed to measure the association between the comorbid trajectories of tobacco and marijuana use and the psychological difficulty variables. The authors found 6 joint trajectory groups. The authors compared the non-or-experimental tobacco/marijuana use group with the other user groups in each of the psychological difficulty domains. The infrequent tobacco/late-onset marijuana use and chronic tobacco/marijuana use groups differed most strongly from the non-or-experimental tobacco/marijuana use group across the antisocial behavior, poor self-control, and internalizing problems domains. The chronic tobacco/maturing out marijuana use group also had significant associations in each of these domains. The infrequent tobacco/marijuana use and late-onset tobacco/infrequent marijuana use groups had no or weak associations with the psychological outcomes. Tobacco and marijuana cessation programs should identify and address comorbid use of tobacco and marijuana, and antisocial behavior, poor self-control, and internalizing problems, which are associated with histories of comorbid use of the 2 substances.


Assuntos
Negro ou Afro-Americano/psicologia , Hispânico ou Latino/psicologia , Fumar Maconha/psicologia , Fumar/psicologia , Adolescente , Adulto , Comorbidade , Feminino , Humanos , Modelos Logísticos , Estudos Longitudinais , Masculino , Fumar Maconha/etnologia , Cidade de Nova Iorque , Fumar/etnologia , Inquéritos e Questionários
15.
Mol Biochem Parasitol ; 175(1): 49-57, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20883728

RESUMO

Oligopeptidase B is a clan SC, family S9 serine peptidase found in gram positive bacteria, plants and trypanosomatids. Evidence suggests it is a virulence factor and thus therapeutic target in both Trypanosoma cruzi and T. brucei, but little is known about its function in Leishmania. In this study L. major OPB-deficient mutants (Δopb) were created. These grew normally as promastigotes, had a small deficiency in their ability to undergo differentiation to metacyclic promastigotes, were significantly less able to infect and survive within macrophages in vitro, but were virulent to mice. These data suggest that L. major OPB itself is not an important virulence factor, indicating functional differences between trypanosomes and Leishmania in their interaction with the mammalian host. The possibility that an OPB-like enzyme (designated OPB2) in L. major might compensate for the loss of OPB in Δopb was investigated via by mapping its sequence onto the 1.6Å structure of L. major OPB. This suggested that the residues involved in the S1 and S2 subsites of OPB2 are identical to OPB and hence the substrate specificity would be similar. Consequently there may be redundancy between the two enzymes.


Assuntos
Leishmania major/enzimologia , Leishmania major/patogenicidade , Serina Endopeptidases/deficiência , Sequência de Aminoácidos , Animais , Células Cultivadas , Modelos Animais de Doenças , Deleção de Genes , Leishmania major/genética , Leishmania major/crescimento & desenvolvimento , Leishmaniose Cutânea/parasitologia , Leishmaniose Cutânea/patologia , Macrófagos/parasitologia , Camundongos , Dados de Sequência Molecular , Proteínas de Protozoários/genética , Alinhamento de Sequência , Serina Endopeptidases/genética , Fatores de Virulência/deficiência , Fatores de Virulência/genética
16.
Mol Biochem Parasitol ; 171(2): 89-96, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20338198

RESUMO

The activity of cyclin-dependent kinases (CDKs), which are key regulators of the eukaryotic cell cycle, is regulated through post-translational mechanisms, including binding of a cyclin and phosphorylation. Previously studies have shown that Leishmania mexicana CRK3 is an essential CDK that is a functional homologue of human CDK1. In this study, recombinant histidine tagged L. mexicana CRK3 and the cyclin CYCA were combined in vitro to produce an active histone H1 kinase that was inhibited by the CDK inhibitors, flavopiridol and indirubin-3'-monoxime. Protein kinase activity was observed in the absence of phosphorylation of the T-loop residue Thr178, but increased 5-fold upon phosphorylation by the CDK activating kinase Civ1 of Saccharomyces cerevisiae. Seven recombinant L. major CRKs (1, 2, 3, 4, 6, 7 and 8) were also expressed and purified, none of which were active as monomers. Moreover, only CRK3 was phosphorylated by Civ1. HA-tagged CYCA expressed in L. major procyclic promastigotes was co-precipitated with CRK3 and exhibited histone H1 kinase activity. These data indicate that in Leishmania CYCA interacts with CRK3 to form an active protein kinase, confirm the conservation of the regulatory mechanisms that control CDK activity in other eukaryotes, but identifies biochemical differences to human CDK1.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina A/metabolismo , Leishmania mexicana/enzimologia , Proteínas Quinases/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Proteína Quinase CDC2/genética , Ciclina A/genética , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Indóis/farmacologia , Leishmania mexicana/genética , Dados de Sequência Molecular , Oximas/farmacologia , Fosforilação , Piperidinas/farmacologia , Proteínas Quinases/genética , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
17.
Nicotine Tob Res ; 12(5): 474-82, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20231241

RESUMO

INTRODUCTION: This longitudinal study examined the psychosocial factors associated with the comorbidity of pairs of tobacco and marijuana use trajectories from adolescence extending into adulthood in two ethnic groups, Blacks and Puerto Ricans. METHODS: Data on psychosocial functioning and tobacco and marijuana use at four points in time were obtained. RESULTS: The association between the trajectories of tobacco and marijuana use was quite high. Pairs of comorbid trajectories of tobacco and marijuana use may share at least three kinds of influence: (a) a constellation of externalizing personality risk factors, (b) Depressive Mood and low Ego Integration, and (c) identification with certain group values. DISCUSSION: Knowledge of the risk and protective factors for pairs of comorbid trajectories of use may strengthen the foundation for individual and group targets for prevention and treatment programs.


Assuntos
Fumar Maconha/psicologia , Fatores de Risco , Fumar/psicologia , Comorbidade , Humanos , Fumar Maconha/epidemiologia , Fumar/epidemiologia
18.
Clin Cancer Res ; 13(12): 3682-8, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17575233

RESUMO

PURPOSE: In the current study, we examined the in vivo effects of AZD1152, a novel and specific inhibitor of Aurora kinase activity (with selectivity for Aurora B). EXPERIMENTAL DESIGN: The pharmacodynamic effects and efficacy of AZD1152 were determined in a panel of human tumor xenograft models. AZD1152 was dosed via several parenteral (s.c. osmotic mini-pump, i.p., and i.v.) routes. RESULTS: AZD1152 potently inhibited the growth of human colon, lung, and hematologic tumor xenografts (mean tumor growth inhibition range, 55% to > or =100%; P < 0.05) in immunodeficient mice. Detailed pharmacodynamic analysis in colorectal SW620 tumor-bearing athymic rats treated i.v. with AZD1152 revealed a temporal sequence of phenotypic events in tumors: transient suppression of histone H3 phosphorylation followed by accumulation of 4N DNA in cells (2.4-fold higher compared with controls) and then an increased proportion of polyploid cells (>4N DNA, 2.3-fold higher compared with controls). Histologic analysis showed aberrant cell division that was concurrent with an increase in apoptosis in AZD1152-treated tumors. Bone marrow analyses revealed transient myelosuppression with the drug that was fully reversible following cessation of AZD1152 treatment. CONCLUSIONS: These data suggest that selective targeting of Aurora B kinase may be a promising therapeutic approach for the treatment of a range of malignancies. In addition to the suppression of histone H3 phosphorylation, determination of tumor cell polyploidy and apoptosis may be useful biomarkers for this class of therapeutic agent. AZD1152 is currently in phase I trials.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Experimentais/tratamento farmacológico , Organofosfatos/farmacologia , Quinazolinas/farmacologia , Animais , Aurora Quinase B , Aurora Quinases , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Humanos , Camundongos , Camundongos Nus , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , Ratos , Transplante Heterólogo
19.
J Med Chem ; 50(9): 2213-24, 2007 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-17373783

RESUMO

The Aurora kinases have been the subject of considerable interest as targets for the development of new anticancer agents. While evidence suggests inhibition of Aurora B kinase gives rise to the more pronounced antiproliferative phenotype, the most clinically advanced agents reported to date typically inhibit both Aurora A and B. We have discovered a series of pyrazoloquinazolines, some of which show greater than 1000-fold selectivity for Aurora B over Aurora A kinase activity, in recombinant enzyme assays. These compounds have been designed for parenteral administration and achieve high levels of solubility by virtue of their ability to be delivered as readily activated phosphate derivatives. The prodrugs are comprehensively converted to the des-phosphate form in vivo, and the active species have advantageous pharmacokinetic properties and safety pharmacology profiles. The compounds display striking in vivo activity, and compound 5 (AZD1152) has been selected for clinical evaluation and is currently in phase 1 clinical trials.


Assuntos
Antineoplásicos/síntese química , Organofosfatos/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirazóis/síntese química , Quinazolinas/síntese química , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Aurora Quinase A , Aurora Quinase B , Aurora Quinases , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores das Enzimas do Citocromo P-450 , Ensaios de Seleção de Medicamentos Antitumorais , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Feminino , Histonas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Nus , Organofosfatos/farmacocinética , Organofosfatos/farmacologia , Fosforilação , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Ligação Proteica , Pirazóis/farmacocinética , Pirazóis/farmacologia , Quinazolinas/farmacocinética , Quinazolinas/farmacologia , Ratos , Proteínas Recombinantes/antagonistas & inibidores , Relação Estrutura-Atividade , Transplante Heterólogo
20.
Aquat Toxicol ; 81(4): 397-408, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17289167

RESUMO

The effects of 17beta-oestradiol (E2) on mortality, growth rates, sexual maturation, hepatic vitellogenin (VTG) mRNA expression and reproductive success were investigated during an 8-month, water-borne exposure of a marine fish, the sand goby (Pomatoschistus minutus). Indicators of oestrogenic exposure were investigated as predictors of population-level reproductive success. E2 exposure concentrations were <5 (below limit of detection), 16+/-3, 97+/-20 and 669+/-151 ng l(-1) (bootstrap means and standard errors). The carrier solvent (<20 microl l(-1) propan-2-ol) significantly reduced the rate of egg production compared to untreated fish, but did not significantly affect male VTG mRNA expression, brood size, or the other studied parameters. Fish exposed to 16 ng l(-1) E2 showed few adverse effects compared with solvent only-exposed fish. Exposure to 97 ng l(-1) E2 significantly inhibited male sexual maturation, induced male VTG mRNA expression and delayed spawning. The 97 ng l(-1) E2 exposed population also produced fertile eggs at a significantly slower rate than solvent controls; however, brood size, fertility and overall reproductive success were not significantly affected. Exposure to 669 ng l(-1) E2 significantly increased mortality, adversely affected haematological parameters and caused an almost total lack of reproductive activity, with both sexes failing to mature. Reproductive failure following exposure to 669 ng l(-1) E2 was evident in both sexes when crossed with untreated animals. This work indicates that marine fish are similarly as sensitive to oestrogenic exposure as freshwater fish, that exposure biomarkers such as VTG are more sensitive to exposure than are reproductive effects, and that the use of carrier solvents in long-term reproductive studies should be avoided.


Assuntos
Biomarcadores/análise , Monitoramento Ambiental/estatística & dados numéricos , Estradiol/toxicidade , Perciformes/metabolismo , RNA Mensageiro/metabolismo , Água do Mar/análise , Poluentes Químicos da Água/toxicidade , Análise de Variância , Animais , Masculino , Perciformes/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos , Escócia , Maturidade Sexual/efeitos dos fármacos , Vitelogeninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA