Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 13(2)2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546185

RESUMO

The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG's antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Coronavirus Humano OC43/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Tapsigargina/farmacologia , Animais , Antivirais/uso terapêutico , Betacoronavirus/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Coronavirus Humano OC43/fisiologia , Estresse do Retículo Endoplasmático , Humanos , Vírus da Influenza A Subtipo H1N1/fisiologia , Camundongos , Testes de Sensibilidade Microbiana , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Ribavirina/farmacologia , SARS-CoV-2/fisiologia , Tapsigargina/uso terapêutico , Replicação Viral/efeitos dos fármacos
2.
J Virol ; 89(5): 2494-506, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25540384

RESUMO

UNLABELLED: Skeletal muscle, at 30 to 40% of body mass, is the most abundant soft tissue in the body. Besides its primary function in movement and posture, skeletal muscle is a significant innate immune organ with the capacity to produce cytokines and chemokines and respond to proinflammatory cytokines. Little is known about the role of skeletal muscle during systemic influenza A virus infection in any host and particularly avian species. Here we used primary chicken and duck multinucleated myotubes to examine their susceptibility and innate immune response to influenza virus infections. Both chicken and duck myotubes expressed avian and human sialic acid receptors and were readily susceptible to low-pathogenicity (H2N3 A/mallard duck/England/7277/06) and high-pathogenicity (H5N1 A/turkey/England/50-92/91 and H5N1 A/turkey/Turkey/1/05) avian and human H1N1 (A/USSR/77) influenza viruses. Both avian host species produced comparable levels of progeny H5N1 A/turkey/Turkey/1/05 virus. Notably, the rapid accumulation of viral nucleoprotein and matrix (M) gene RNA in chicken and duck myotubes was accompanied by extensive cytopathic damage with marked myotube apoptosis (widespread microscopic blebs, caspase 3/7 activation, and annexin V binding at the plasma membrane). Infected chicken myotubes produced significantly higher levels of proinflammatory cytokines than did the corresponding duck cells. Additionally, in chicken myotubes infected with H5N1 viruses, the induction of interferon beta (IFN-ß) and IFN-inducible genes, including the melanoma differentiation-associated protein 5 (MDA-5) gene, was relatively weak compared to infection with the corresponding H2N3 virus. Our findings highlight that avian skeletal muscle fibers are capable of productive influenza virus replication and are a potential tissue source of infection. IMPORTANCE: Infection with high-pathogenicity H5N1 viruses in ducks is often asymptomatic, and skeletal muscle from such birds could be a source of infection of humans and animals. Little is known about the ability of influenza A viruses to replicate in avian skeletal muscle fibers. We show here that cultured chicken and duck myotubes were highly susceptible to infection with both low- and high-pathogenicity avian influenza viruses. Infected myotubes of both avian species displayed rapid virus accumulation, apoptosis, and extensive cellular damage. Our results indicate that avian skeletal muscle fibers of chicken and duck could be significant contributors to progeny production of highly pathogenic H5N1 viruses.


Assuntos
Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H3N2/crescimento & desenvolvimento , Virus da Influenza A Subtipo H5N1/crescimento & desenvolvimento , Fibras Musculares Esqueléticas/virologia , Animais , Apoptose , Células Cultivadas , Galinhas , Citocinas/metabolismo , Efeito Citopatogênico Viral , Patos , Perfilação da Expressão Gênica , RNA Mensageiro/biossíntese , RNA Viral/biossíntese , Receptores Virais/análise , Ácidos Siálicos/análise
3.
Avian Pathol ; 42(6): 566-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24188498

RESUMO

Exposure of a virulent isolate of Newcastle disease virus (NDV) and two highly pathogenic avian influenza (HPAI) viruses, one of H7N1 subtype and the other H5N1 subtype, to a continuous ultraviolet B flux of approximately 90µW/cm(2), which models solar ultraviolet radiation, resulted in an exponential decline in infectivity with time. The time taken for a reduction in titre of 1 log10 median tissue culture infectious dose for each virus was: NDV, 69 min; H7N1 HPAI virus, 158 min; and H5N1 HPAI, virus 167 min.


Assuntos
Vírus da Influenza A/efeitos da radiação , Vírus da Doença de Newcastle/efeitos da radiação , Raios Ultravioleta , Inativação de Vírus/efeitos da radiação , Vírus da Influenza A/patogenicidade , Vírus da Doença de Newcastle/patogenicidade , Fatores de Tempo , Virulência
4.
Virol J ; 9: 230, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23043930

RESUMO

BACKGROUND: One requisite of quantitative reverse transcription PCR (qRT-PCR) is to normalise the data with an internal reference gene that is invariant regardless of treatment, such as virus infection. Several studies have found variability in the expression of commonly used housekeeping genes, such as beta-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), under different experimental settings. However, ACTB and GAPDH remain widely used in the studies of host gene response to virus infections, including influenza viruses. To date no detailed study has been described that compares the suitability of commonly used housekeeping genes in influenza virus infections. The present study evaluated several commonly used housekeeping genes [ACTB, GAPDH, 18S ribosomal RNA (18S rRNA), ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide (ATP5B) and ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C1 (subunit 9) (ATP5G1)] to identify the most stably expressed gene in human, pig, chicken and duck cells infected with a range of influenza A virus subtypes. RESULTS: The relative expression stability of commonly used housekeeping genes were determined in primary human bronchial epithelial cells (HBECs), pig tracheal epithelial cells (PTECs), and chicken and duck primary lung-derived cells infected with five influenza A virus subtypes. Analysis of qRT-PCR data from virus and mock infected cells using NormFinder and BestKeeper software programmes found that 18S rRNA was the most stable gene in HBECs, PTECs and avian lung cells. CONCLUSIONS: Based on the presented data from cell culture models (HBECs, PTECs, chicken and duck lung cells) infected with a range of influenza viruses, we found that 18S rRNA is the most stable reference gene for normalising qRT-PCR data. Expression levels of the other housekeeping genes evaluated in this study (including ACTB and GPADH) were highly affected by influenza virus infection and hence are not reliable as reference genes for RNA normalisation.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A/genética , RNA Ribossômico 18S/genética , Actinas/genética , Animais , Células Cultivadas , Embrião de Galinha , Galinhas , Cães , Patos , Perfilação da Expressão Gênica/normas , Genes Essenciais/genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Humanos , Pulmão/citologia , Pulmão/virologia , Reação em Cadeia da Polimerase em Tempo Real , Padrões de Referência , Mucosa Respiratória/citologia , Mucosa Respiratória/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Software , Suínos
5.
J Virol ; 86(17): 9201-10, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22718824

RESUMO

Respiratory epithelial cells and macrophages are the key innate immune cells that play an important role in the pathogenesis of influenza A virus infection. We found that these two cell types from both human and pig showed comparable susceptibilities to initial infection with a highly pathogenic avian influenza (HPAI) H5N1 virus (A/turkey/Turkey/1/05) and a moderately pathogenic human influenza H1N1 virus (A/USSR/77), but there were contrasting differences in host innate immune responses. Human cells mounted vigorous cytokine (tumor necrosis factor alpha [TNF-α] and interleukin-6 [IL-6]) and chemokine (CXCL9, CXCL10, and CXCL11) responses to H5N1 virus infection. However, pig epithelial cells and macrophages showed weak or no TNF-α and chemokine induction with the same infections. The apparent lack of a strong proinflammatory response, corroborated by the absence of TNF-α induction in H5N1 virus-challenged pigs, coincided with greater cell death and the reduced release of infectious virus from infected pig epithelial cells. Suppressor of cytokine signaling 3 (SOCS3), a protein suppressor of the JAK-STAT pathway, was constitutively highly expressed and transcriptionally upregulated in H5N1 virus-infected pig epithelial cells and macrophages, in contrast to the corresponding human cells. The overexpression of SOCS3 in infected human macrophages dampened TNF-α induction. In summary, we found that the reported low susceptibility of pigs to contemporary Eurasian HPAI H5N1 virus infections coincides at the level of innate immunity of respiratory epithelial cells and macrophages with a reduced output of viable virus and an attenuated proinflammatory response, possibly mediated in part by SOCS3, which could serve as a target in the treatment or prevention of virus-induced hypercytokinemia, as observed for humans.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/imunologia , Liberação de Vírus , Animais , Linhagem Celular , Células Cultivadas , Quimiocinas/genética , Quimiocinas/imunologia , Embrião de Galinha , Citocinas/genética , Citocinas/imunologia , Humanos , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Influenza Humana/genética , Influenza Humana/virologia , Macrófagos/imunologia , Macrófagos/virologia , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Suínos , Doenças dos Suínos/genética , Doenças dos Suínos/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA