Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Anal Chem ; 94(10): 4141-4145, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35234449

RESUMO

Mass spectrometry (MS) allows for automated analysis of complex samples at high resolution without the need for labeling/derivatization. Liquid atmospheric pressure matrix-assisted laser desorption/ionization (LAP-MALDI) enables rapid sample preparation and MS analysis using microtiter-plate formats and high-performing mass spectrometers. We present a step change in high-speed, large-scale MS sample analysis of peptides at 20 samples/s and an enzymatic assay at 40 samples/s, i.e., an order of magnitude faster than current MS platforms. LAP-MALDI requires only low amounts of sample volume (<2 µL), of which only a fraction (<1%) is typically consumed, and allows for multiplexing and high-speed MS/MS analysis, demonstrated at ∼10 samples/s. Its high ion signal stability and similarity to electrospray ionization enables CVs below 10% and the analysis of multiply charged peptide ions at these extreme speeds. LAP-MALDI MS fulfills the speed requirements for large-scale population diagnostics and compound screening with the potential of analyzing >1 million samples per day.


Assuntos
Pressão Atmosférica , Espectrometria de Massas em Tandem , Íons , Lasers , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
2.
J Am Soc Mass Spectrom ; 31(11): 2313-2320, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-32959654

RESUMO

Ultraviolet photodissociation (UVPD) has emerged as a useful technique for characterizing peptide, protein, and protein complex primary and secondary structure. 193 nm UVPD, specifically, enables extensive covalent fragmentation of the peptide backbone without the requirement of a specific side chain chromophore and with no precursor charge state dependence. We have modified a commercial quadrupole-ion mobility-time-of-flight (Q-IM-TOF) mass spectrometer to include 193 nm UVPD following ion mobility. Ion mobility (IM) is a gas-phase separation technique that enables separation of ions by their size, shape, and charge, providing an orthogonal dimension of separation to mass analysis. Following instrument modifications, we characterized the performance of, and information that could be generated from, this new setup using the model peptides substance P, melittin, and insulin chain B. These experiments show extensive fragmentation across the peptide backbone and a variety of ion types as expected from 193 nm UVPD. Additionally, y-2 ions (along with complementary a+2 and b+2 ions) N-terminal to proline were observed. Combining the IM separation and mobility gating capabilities with UVPD, we demonstrate the ability to accomplish both mass- and mobility-selection of bradykinin des-Arg9 and des-Arg1 peptides followed by complete sequence characterization by UVPD. The new capabilities of this modified instrument demonstrate the utility of combining IM with UVPD because isobaric species cannot be independently selected with a traditional quadrupole alone.


Assuntos
Peptídeos/química , Sequência de Aminoácidos , Íons/química , Espectrometria de Massas , Fotólise , Estrutura Secundária de Proteína , Raios Ultravioleta
3.
J Orthop Res ; 37(4): 812-820, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30790359

RESUMO

Fractures typically heal via endochondral and intramembranous bone formation, which together form a callus that achieves union and biomechanical recovery. PTHrP, a PTH receptor agonist, plays an important physiological role in fracture healing as an endogenous stimulator of endochondral and intramembranous bone formation. Abaloparatide, a novel systemically-administered osteoanabolic PTH receptor agonist that reduces fracture risk in women with postmenopausal osteoporosis, has 76% homology to PTHrP, suggesting it may have potential to improve fracture healing. To test this hypothesis, ninety-six 12-week-old male rats underwent unilateral internally-stabilized closed mid-diaphyseal femoral fractures and were treated starting the next day with daily s.c. saline (Vehicle) or abaloparatide at 5 or 20 µg/kg/d for 4 or 6 weeks (16 rats/group/time point). Histomorphometry and histology analyses indicated that fracture calluses from the abaloparatide groups exhibited significantly greater total area, higher fluorescence scores indicating more newly-formed bone, and higher fracture bridging scores versus Vehicle controls. Callus bridging score best correlated with callus cartilage score (r = 0.64) and fluorescence score (r = 0.67) at week 4, and callus area correlated with cartilage score (r = 0.60) and fluorescence score (r = 0.89) at Week 6. By micro-CT, calluses from one or both abaloparatide groups had greater bone volume, bone volume fraction, bone mineral content, bone mineral density, and cross-sectional area at both time points versus Vehicle controls. Destructive bending tests indicated greater callus maximum load and stiffness in one or both abaloparatide groups at both time points versus Vehicle controls. These results provide preliminary preclinical evidence for improved fracture healing with systemically-administered abaloparatide. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.


Assuntos
Fraturas do Fêmur/tratamento farmacológico , Consolidação da Fratura/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/uso terapêutico , Receptor Tipo 1 de Hormônio Paratireóideo/agonistas , Animais , Calo Ósseo/diagnóstico por imagem , Calo Ósseo/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Masculino , Proteína Relacionada ao Hormônio Paratireóideo/farmacologia , Ratos Sprague-Dawley , Microtomografia por Raio-X
4.
J Am Soc Mass Spectrom ; 30(1): 45-57, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30460642

RESUMO

Gas-phase hydrogen/deuterium exchange measured by mass spectrometry (gas-phase HDX-MS) is a fast method to probe the conformation of protein ions. The use of gas-phase HDX-MS to investigate the structure and interactions of protein complexes is however mostly unharnessed. Ionizing proteins under conditions that maximize preservation of their native structure (native MS) enables the study of solution-like conformation for milliseconds after electrospray ionization (ESI), which enables the use of ND3-gas inside the mass spectrometer to rapidly deuterate heteroatom-bound non-amide hydrogens. Here, we explored the utility of gas-phase HDX-MS to examine protein-protein complexes and inform on their binding surface and the structural consequences of gas-phase dissociation. Protein complexes ranging from 24 kDa dimers to 395 kDa 24mers were analyzed by gas-phase HDX-MS with subsequent collision-induced dissociation (CID). The number of exchangeable sites involved in complex formation could, therefore, be estimated. For instance, dimers of cytochrome c or α-lactalbumin incorporated less deuterium/subunit than their unbound monomer counterparts, providing a measure of the number of heteroatom-bound side-chain hydrogens involved in complex formation. We furthermore studied if asymmetric charge-partitioning upon dissociation of protein complexes caused intermolecular H/D migration. In larger multimeric protein complexes, the dissociated monomer showed a significant increase in deuterium. This indicates that intermolecular H/D migration occurs as part of the asymmetric partitioning of charge during CID. We discuss several models that may explain this increase deuterium content and find that a model where only deuterium involved in migrating charge can account for most of the deuterium enrichment observed on the ejected monomer. In summary, the deuterium content of the ejected subunit can be used to estimate that of the intact complex with deviations observed for large complexes accounted for by charge migration. Graphical abstract ᅟ.


Assuntos
Medição da Troca de Deutério/métodos , Espectrometria de Massas/métodos , Complexos Multiproteicos/análise , Complexos Multiproteicos/química , Animais , Bovinos , Citocromos c/análise , Citocromos c/química , Citocromos c/metabolismo , Medição da Troca de Deutério/instrumentação , Gases/química , Humanos , Lactalbumina/análise , Lactalbumina/química , Lactalbumina/metabolismo , Espectrometria de Massas/instrumentação , Complexos Multiproteicos/metabolismo , Pré-Albumina/análise , Pré-Albumina/química , Pré-Albumina/metabolismo , Multimerização Proteica
5.
Rapid Commun Mass Spectrom ; 32(24): 2099-2105, 2018 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30230090

RESUMO

RATIONALE: In-source decay (ISD) matrix-assisted laser desorption/ionisation (MALDI) mass spectrometry with a 1,5-diaminonaphthalene (1,5-DAN) matrix is used for the structural characterisation of peptides. However, MALDI spectra are intrinsically complicated by the presence of matrix ions, which interfere with the peptide fragments. This may cause false-positive results or reduced sequence coverage. This paper reports investigations of ISD processes in an intermediate pressure MALDI ion source and a protocol for the removal of interfering ions using ion mobility separation (IMS). METHODS: An intermediate pressure MALDI source of a Q-IMS-Q-TOF instrument (Synapt G2) has been employed for the ISD of selected peptides using a 1,5-DAN matrix. RESULTS: Successful coupling of the MALDI source tuned for ISD experiments using IMS is demonstrated. The IMS made it possible to remove interfering matrix ions effectively from the spectra and thus to increase the confidence of spectral interpretation. Extensive fragment series corresponding to N-Cα bond cleavages were observed under optimised conditions; on the other hand, weaker series of ions caused by peptide bond cleavages were prevalent for default conditions and/or the α-hydroxycinnamic acid matrix. CONCLUSIONS: Ion mobility has been used for the elimination of matrix ions. The technique has been applied to top-down sequencing of non-tryptic peptides, such as the human palmitoylated analogue of prolactin-releasing peptide used in recent obesity studies, and human and insect antimicrobial peptides.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/química , Animais , Peptídeos Catiônicos Antimicrobianos/química , Humanos , Insetos , Espectrometria de Massas/instrumentação , Hormônio Liberador de Prolactina/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
6.
Anal Chem ; 90(2): 1077-1080, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29266933

RESUMO

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is now a routinely used technique to inform on protein structure, dynamics, and interactions. Localizing the incorporated deuterium content on a single residue basis increases the spatial resolution of this technique enabling detailed structural analysis. Here, we investigate the use of ultraviolet photodissociation (UVPD) at 213 nm to measure deuterium levels at single residue resolution in HDX-MS experiments. Using a selectively labeled peptide, we show that UVPD occurs without H/D scrambling as the peptide probe accurately retains its solution-phase deuterium labeling pattern. Our results indicate that UVPD provides an attractive alternative to electron mediated dissociation for increasing the spatial resolution of the HDX-MS experiment, capable of yielding high fragmentation efficiency, high fragment ion diversity, and low precursor ion charge-state dependency.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/química , Deutério/análise , Medição da Troca de Deutério/métodos , Fotólise , Raios Ultravioleta
7.
Methods ; 104: 11-20, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26827934

RESUMO

Liquid matrix-assisted laser desorption/ionization (MALDI) allows the generation of predominantly multiply charged ions in atmospheric pressure (AP) MALDI ion sources for mass spectrometry (MS) analysis. The charge state distribution of the generated ions and the efficiency of the ion source in generating such ions crucially depend on the desolvation regime of the MALDI plume after desorption in the AP-to-vacuum inlet. Both high temperature and a flow regime with increased residence time of the desorbed plume in the desolvation region promote the generation of multiply charged ions. Without such measures the application of an electric ion extraction field significantly increases the ion signal intensity of singly charged species while the detection of multiply charged species is less dependent on the extraction field. In general, optimization of high temperature application facilitates the predominant formation and detection of multiply charged compared to singly charged ion species. In this study an experimental set-up and optimization strategy is described for liquid AP-MALDI MS which improves the ionization efficiency of selected ion species up to 14 times. In combination with ion mobility separation, the method allows the detection of multiply charged peptide and protein ions for analyte solution concentrations as low as 2fmol/µL (0.5µL, i.e. 1fmol, deposited on the target) with very low sample consumption in the low nL-range.


Assuntos
Peptídeos/isolamento & purificação , Proteínas/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Pressão Atmosférica , Íons/química , Peptídeos/química , Proteínas/classificação
8.
Structure ; 24(2): 310-8, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26749447

RESUMO

Fast gas-phase hydrogen/deuterium exchange mediated by ND3 gas and measured by mass spectrometry (gas-phase HDX-MS) is a largely unharnessed, fast, and sensitive method for probing primary- and higher-order polypeptide structure. Labeling of heteroatom-bound non-amide hydrogens in a sub-millisecond time span after electrospray ionization by ND3 gas can provide structural insights into protein conformers present in solution. Here, we have explored the use of gas-phase HDX-MS for probing the higher-order structure and binding interfaces of protein complexes originating from native solution conditions. Lysozyme ions bound by an oligosaccharide incorporated less deuterium than the unbound ion. Similarly, trypsin ions showed reduced deuterium uptake when bound by the peptide ligand vasopressin. Our results are in good agreement with crystal structures of the native protein complexes, and illustrate that gas-phase HDX-MS can provide a sensitive and simple approach to measure the number of heteroatom-bound non-amide side-chain hydrogens involved in the binding interface of biologically relevant protein complexes.


Assuntos
Medição da Troca de Deutério/métodos , Complexos Multiproteicos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sítios de Ligação , Modelos Moleculares , Ligação Proteica , Conformação Proteica
9.
J Am Soc Mass Spectrom ; 27(4): 662-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26810432

RESUMO

Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra. Graphical Abstract ᅟ.


Assuntos
Peptídeos/química , Sequência de Aminoácidos , Deutério/química , Medição da Troca de Deutério/métodos , Gases/química , HIV/química , Infecções por HIV/virologia , Humanos , Espectrometria de Massas/métodos , Prótons , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
10.
Anal Chem ; 88(2): 1218-21, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26641730

RESUMO

Mass spectrometry has emerged as a useful tool in the study of proteins and protein complexes. It is of fundamental interest to explore how the structures of proteins and protein complexes are affected by the absence of solvent and how this alters with increasing time in the gas phase. Here we demonstrate that a range of protein and protein complexes can be confined within the Trap T-wave region of a modified Waters Synapt G2S instrument, including monomeric (ß-lactoglobulin), dimeric (ß-lactoglobulin and enolase), tetrameric (streptavidin, concanavalin A, and pyruvate kinase), and pentameric (C-reactive protein) complexes, ranging in size up to 237 kDa. We demonstrate that complexes can be confined within the Trap region for varying lengths of time over the range 1-60 s and with up to 86% trapping efficiency for 1 s trapping. Furthermore, using model systems, we show that these noncovalent complexes can also be fragmented by surface-induced dissociation (SID) following trapping. SID reveals similar dissociation patterns over all trapping times studied for unactivated protein complexes, suggesting that any conformational changes occurring over this time scale are insufficient to cause substantial differences in the SID spectra of these complexes. Intentional alteration of structure by cone activation produces a distinct SID spectrum, with the differences observed being conserved, in comparison to unactivated complex, after trapping. However, subtle differences in the SID spectra of the activated complex are also observed as a function of trapping time.


Assuntos
Proteína C-Reativa/química , Concanavalina A/química , Gases/química , Lactoglobulinas/química , Fosfopiruvato Hidratase/química , Piruvato Quinase/química , Estreptavidina/química , Espectrometria de Massas , Fosfopiruvato Hidratase/metabolismo , Piruvato Quinase/metabolismo , Propriedades de Superfície
11.
Proteomics ; 15(16): 2842-50, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25603979

RESUMO

The study of protein conformation by solution-phase hydrogen/deuterium exchange (HDX) coupled to MS is well documented. This involves monitoring the exchange of backbone amide protons with deuterium and provides details concerning the protein's tertiary structure. However, undesired back-exchange during post-HDX analyses can be difficult to control. Here, gas-phase HDX-MS, during which labile hydrogens on amino acid side chains are exchanged in sub-millisecond time scales, has been employed to probe changes within protein structures. Addition of the solvent 2,2,2-trifluoroethanol to a protein in solution can affect the structure of the protein, resulting in an increase in secondary and/or tertiary structure which is detected using circular dichroism. Using a Synapt G2-S ESI-mass spectrometer modified to allow deuterated ammonia into the transfer ion guide (situated between the ion mobility cell and the TOF analyser), gas-phase HDX-MS is shown to reflect minor structural changes experienced by the proteins ß-lactoglobulin and ubiquitin, as observed by the reduction in the level of deuterium incorporation. Additionally, the use of gas-phase HDX-MS to distinguish between co-populated proteins conformers within a solution is demonstrated with the disordered protein calmodulin; the gas-phase HDX-MS results correspond directly with complementary data obtained by use of ion mobility spectrometry-MS.


Assuntos
Medição da Troca de Deutério/métodos , Conformação Proteica , Proteínas/química , Modelos Moleculares , Dobramento de Proteína , Proteínas/análise , Solventes
12.
Anal Chem ; 86(23): 11868-76, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25375223

RESUMO

Gas-phase hydrogen/deuterium exchange (HDX) is a fast and sensitive, yet unharnessed analytical approach for providing information on the structural properties of biomolecules, in a complementary manner to mass analysis. Here, we describe a simple setup for ND3-mediated millisecond gas-phase HDX inside a mass spectrometer immediately after ESI (gas-phase HDX-MS) and show utility for studying the primary and higher-order structure of peptides and proteins. HDX was achieved by passing N2-gas through a container filled with aqueous deuterated ammonia reagent (ND3/D2O) and admitting the saturated gas immediately upstream or downstream of the primary skimmer cone. The approach was implemented on three commercially available mass spectrometers and required no or minor fully reversible reconfiguration of gas-inlets of the ion source. Results from gas-phase HDX-MS of peptides using the aqueous ND3/D2O as HDX reagent indicate that labeling is facilitated exclusively through gaseous ND3, yielding similar results to the infusion of purified ND3-gas, while circumventing the complications associated with the use of hazardous purified gases. Comparison of the solution-phase- and gas-phase deuterium uptake of Leu-Enkephalin and Glu-Fibrinopeptide B, confirmed that this gas-phase HDX-MS approach allows for labeling of sites (heteroatom-bound non-amide hydrogens located on side-chains, N-terminus and C-terminus) not accessed by classical solution-phase HDX-MS. The simple setup is compatible with liquid chromatography and a chip-based automated nanoESI interface, allowing for online gas-phase HDX-MS analysis of peptides and proteins separated on a liquid chromatographic time scale at increased throughput. Furthermore, online gas-phase HDX-MS could be performed in tandem with ion mobility separation or electron transfer dissociation, thus enabling multiple orthogonal analyses of the structural properties of peptides and proteins in a single automated LC-MS workflow.


Assuntos
Medição da Troca de Deutério , Gases/química , Peptídeos/análise , Peptídeos/química , Cromatografia Líquida , Transporte de Elétrons , Espectrometria de Massas , Conformação Proteica , Fatores de Tempo
13.
Anal Chem ; 86(19): 9644-52, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25188777

RESUMO

We introduce a new atmospheric pressure charge stripping (AP-CS) method for the electrospray ionization mass spectrometry (ESI-MS) analysis of heterogeneous mixtures, utilizing ion/ion proton transfer reactions within an experimental ion source to remove excess charge from sample ions and thereby reduce spectral congestion. The new method enables the extent of charge stripping to be easily controlled, independent of primary ionization, and there are no complications due to adduct formation. Here, we demonstrate AP-CS with a Xevo G2-S Q-TOF from Waters-Micromass using an ion source originally designed for atmospheric pressure-electron capture dissociation (AP-ECD) experiments; repurposing the AP-ECD ion source for AP-CS requires only adding a supplemental reagent (e.g., a perfluorocompound) to scavenge the electrons and generate anions for the charge-stripping reactions. Results from model peptides are first presented to demonstrate the basic method, including differences between the AP-CS and AP-ECD operating modes, and how the extent of charge stripping may be controlled. This is followed by a demonstration of AP-CS for the ESI-MS analysis of several large poly(ethylene glycol)s (PEGs), up to 40 kDa, typical of those used in biopharmaceutical development.


Assuntos
Polietilenoglicóis/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Pressão Atmosférica
14.
J Phys Chem B ; 116(10): 3445-56, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22364440

RESUMO

Infrared multiphoton dissociation (IRMPD) spectroscopy, using a free-electron laser, and ion mobility measurements, using both drift-cell and traveling-wave instruments, were used to investigate the structure of gas-phase peptide (AAHAL + 2H)(2+) ions produced by electrospray ionization. The experimental data from the IRMPD spectra and collisional cross section (Ω) measurements were consistent with the respective infrared spectra and Ω calculated for the lowest-energy peptide ion conformer obtained by extensive molecular dynamics searches and combined density functional theory and ab initio geometry optimizations and energy calculations. Traveling-wave ion mobility measurements were employed to obtain the Ω of charge-reduced peptide cation-radicals, (AAHAL + 2H)(+●), and the c(3), c(4), z(3), and z(4) fragments from electron-transfer dissociation (ETD) of (AAHAL + 2H)(2+). The experimental Ω for the ETD charge-reduced and fragment ions were consistent with the values calculated for fully optimized ion structures and indicated that the ions retained specific hydrogen bonding motifs from the precursor ion. In particular, the Ω for the doubly protonated ions and charge-reduced cation-radicals were nearly identical, indicating negligible unfolding and small secondary structure changes upon electron transfer. The experimental Ω for the (AAHAL + 2H)(+●) cation-radicals were compatible with both zwitterionic and histidine radical structures formed by electron attachment to different sites in the precursor ion, but did not allow their distinction. The best agreement with the experimental Ω was found for ion structures fully optimized with M06-2X/6-31+G(d,p) and using both projection approximation and trajectory methods to calculate the theoretical Ω values.


Assuntos
Gases/química , Histidina/química , Peptídeos/química , Transporte de Elétrons , Íons/química , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Espectrofotometria Infravermelho , Termodinâmica
15.
Anal Chem ; 84(4): 1931-40, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22235835

RESUMO

To interpret the wealth of information contained in the hydrogen/deuterium exchange (HDX) behavior of peptides and proteins in the gas-phase, analytical tools are needed to resolve the HDX of individual exchanging sites. Here we show that ETD can be combined with fast gas-phase HDX in ND(3) gas and used to monitor the exchange of side-chain hydrogens of individual residues in both small peptide ions and larger protein ions a few milliseconds after electrospray. By employing consecutive traveling wave ion guides in a mass spectrometer, peptide and protein ions were labeled on-the-fly (0.1-10 ms) in ND(3) gas and subsequently fragmented by ETD. Fragment ions were separated using ion mobility and mass analysis enabled the determination of the gas-phase deuterium uptake of individual side-chain sites in a range of model peptides of different size and sequence as well as two proteins; cytochrome C and ubiquitin. Gas-phase HDX-ETD experiments on ubiquitin ions ionized from both denaturing and native solution conditions suggest that residue-specific HDX of side-chain hydrogens is sensitive to secondary and tertiary structural features occurring in both near-native and unfolded gas-phase conformers present shortly after electrospray. The described approach for online gas-phase HDX and ETD paves the way for making mass spectrometry techniques based on gas-phase HDX more applicable in bioanalytical research.


Assuntos
Citocromos c/química , Medição da Troca de Deutério , Deutério/análise , Hidrogênio/análise , Fragmentos de Peptídeos/química , Ubiquitina/química , Transporte de Elétrons , Humanos , Espectrometria de Massas por Ionização por Electrospray
16.
Cell Cycle ; 10(24): 4321-9, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22134241

RESUMO

We have recently shown that inhibition of HRR (homologous recombination repair) by Chk1 (checkpoint kinase 1) inhibition radiosensitizes pancreatic cancer cells and others have demonstrated that Chk1 inhibition selectively sensitizes p53 mutant tumor cells. Furthermore, PARP1 [poly (ADP-ribose) polymerase-1] inhibitors dramatically radiosensitize cells with DNA double strand break repair defects. Thus, we hypothesized that inhibition of HRR (mediated by Chk1 via AZD7762) and PARP1 [via olaparib (AZD2281)] would selectively sensitize p53 mutant pancreatic cancer cells to radiation. We also used 2 isogenic p53 cell models to assess the role of p53 status in cancer cells and intestinal epithelial cells to assess overall cancer specificity. DNA damage response and repair were assessed by flow cytometry, γH2AX, and an HRR reporter assay. We found that the combination of AZD7762 and olaparib produced significant radiosensitization in p53 mutant pancreatic cancer cells and in all of the isogenic cancer cell lines. The magnitude of radiosensitization by AZD7762 and olaparib was greater in p53 mutant cells compared with p53 wild type cells. Importantly, normal intestinal epithelial cells were not radiosensitized. The combination of AZD7762 and olaparib caused G 2 checkpoint abrogation, inhibition of HRR, and persistent DNA damage responses. These findings demonstrate that the combination of Chk1 and PARP1 inhibition selectively radiosensitizes p53 mutant pancreatic cancer cells. Furthermore, these studies suggest that inhibition of HRR by Chk1 inhibitors may be a useful strategy for selectively inducing a BRCA1/2 'deficient-like' phenotype in p53 mutant tumor cells, while sparing normal tissue.


Assuntos
Reparo do DNA/fisiologia , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas Quinases/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Proteína Supressora de Tumor p53/genética , Análise de Variância , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Reparo do DNA/efeitos dos fármacos , Combinação de Medicamentos , Citometria de Fluxo , Histonas/metabolismo , Humanos , Immunoblotting , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Mutação/genética , Neoplasias Pancreáticas/radioterapia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1 , Tiofenos/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia
17.
J Am Soc Mass Spectrom ; 22(10): 1784-93, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21952892

RESUMO

The recent application of electron transfer dissociation (ETD) to measure the hydrogen exchange of proteins in solution at single-residue resolution (HX-ETD) paves the way for mass spectrometry-based analyses of biomolecular structure at an unprecedented level of detail. The approach requires that activation of polypeptide ions prior to ETD is minimal so as to prevent undesirable gas-phase randomization of the deuterium label from solution (i.e., hydrogen scrambling). Here we explore the use of ETD in a traveling wave ion guide of a quadrupole-time-of-flight (Q-TOF) mass spectrometer with a "Z-spray" type ion source, to measure the deuterium content of individual residues in peptides. We systematically identify key parameters of the Z-spray ion source that contribute to collisional activation and define conditions that allow ETD experiments to be performed in the traveling wave ion guide without gas-phase hydrogen scrambling. We show that ETD and supplemental collisional activation in a subsequent traveling wave ion guide allows for improved extraction of residue-specific deuterium contents in peptides with low charge. Our results demonstrate the feasibility, and illustrate the advantages of performing HX-ETD experiments on a high-resolution Q-TOF instrument equipped with traveling wave ion guides. Determination of parameters of the Z-spray ion source that contribute to ion heating are similarly pertinent to a growing number of MS applications that also rely on an energetically gentle transfer of ions into the gas-phase, such as the analysis of biomolecular structure by native mass spectrometry in combination with gas-phase ion-ion/ion-neutral reactions or ion mobility spectrometry.


Assuntos
Medição da Troca de Deutério/métodos , Espectrometria de Massas/métodos , Peptídeos/química , Hidrogênio/química , Conformação Proteica
18.
Chem Commun (Camb) ; 46(30): 5458-60, 2010 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-20505878

RESUMO

Electron transfer dissociation (ETD) and collision induced dissociation (CID) have been used to locate the precise binding sites for platinum and ruthenium anticancer complexes on the peptide Substance P. We show that ETD combined with ion mobility-mass spectrometry significantly reduces mass spectral complexity and improves the S/N of the product-ions formed.


Assuntos
Antineoplásicos/farmacologia , Compostos de Platina/farmacologia , Compostos de Rutênio/farmacologia , Substância P/metabolismo , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Antineoplásicos/química , Sítios de Ligação , Compostos de Platina/química , Compostos de Rutênio/química , Substância P/química
19.
Mol Cancer Ther ; 4(8): 1260-7, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16093442

RESUMO

MLN944 is a novel compound currently being codeveloped by Millennium Pharmaceuticals and Xenova Ltd. as a cancer therapeutic and is in a phase I clinical trial for solid tumors. Although MLN944 was originally proposed to function as a topoisomerase I and II inhibitor, more recent data has shown that it is a DNA-intercalating agent that does not inhibit the catalytic activity of topoisomerase I or II. We show here that MLN944 inhibits incorporation of radiolabeled precursors into RNA preferentially over incorporation into DNA and protein in HCT116 and H460 cells. To determine if MLN944 inhibits transcription, a human RNA polymerase II in vitro transcription system was used. MLN944 inhibited initiation when added before or after the formation of preinitiation complexes and inhibited elongation at higher concentrations. The preferential inhibition of initiation differentiates MLN944 from actinomycin D, which more strongly inhibits elongation. Transcription of all RNA polymerases was inhibited in nuclei isolated from HeLa cells treated with low concentrations of MLN944. Our data are consistent with transcription as the target of the potent cytotoxic effects of MLN944.


Assuntos
Antineoplásicos/farmacologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Fenazinas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dactinomicina/farmacologia , Inibidores do Crescimento/farmacologia , Humanos , RNA Polimerase II/metabolismo , Células Tumorais Cultivadas
20.
Hosp Q ; 7(1): 44-8, 4, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14674178

RESUMO

Earlier this year, a paper in Hospital Quarterly, "Creating a Surgical Wait List Management Strategy for Saskatchewan," described the development of a surgical wait list strategy for Saskatchewan. The initial strategy development process uncovered several issues that needed to be addressed including lack of data, inconsistent priorities and frustration on the parts of both providers and patients. This second paper outlines the key points of the recommended surgical wait list strategy and the work to date in its implementation.


Assuntos
Acessibilidade aos Serviços de Saúde , Procedimentos Cirúrgicos Operatórios , Listas de Espera , Implementação de Plano de Saúde , Humanos , Internet , Objetivos Organizacionais , Avaliação de Programas e Projetos de Saúde , Saskatchewan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA