Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 119(32): 10180-90, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26230514

RESUMO

Dynamic nuclear polarization (DNP) enhances the signal in solid-state NMR of proteins by transferring polarization from electronic spins to the nuclear spins of interest. Typically, both the protein and an exogenous source of electronic spins, such as a biradical, are either codissolved or suspended and then frozen in a glycerol/water glassy matrix to achieve a homogeneous distribution. While the use of such a matrix protects the protein upon freezing, it also reduces the available sample volume (by ca. a factor of 4 in our experiments) and causes proportional NMR signal loss. Here we demonstrate an alternative approach that does not rely on dispersing the DNP agent in a glassy matrix. We synthesize a new biradical, ToSMTSL, which is based on the known DNP agent TOTAPOL, but also contains a thiol-specific methanethiosulfonate group to allow for incorporating this biradical into a protein in a site-directed manner. ToSMTSL was characterized by EPR and tested for DNP of a heptahelical transmembrane protein, Anabaena sensory rhodopsin (ASR), by covalent modification of solvent-exposed cysteine residues in two (15)N-labeled ASR mutants. DNP enhancements were measured at 400 MHz/263 GHz NMR/EPR frequencies for a series of samples prepared in deuterated and protonated buffers and with varied biradical/protein ratios. While the maximum DNP enhancement of 15 obtained in these samples is comparable to that observed for an ASR sample cosuspended with ~17 mM TOTAPOL in a glycerol-d8/D2O/H2O matrix, the achievable sensitivity would be 4-fold greater due to the gain in the filling factor. We anticipate that the DNP enhancements could be further improved by optimizing the biradical structure. The use of covalently attached biradicals would broaden the applicability of DNP NMR to structural studies of proteins.


Assuntos
Óxidos N-Cíclicos/química , Cisteína/química , Mesilatos/química , Óxidos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular/métodos , Rodopsinas Sensoriais/química , Anabaena , Óxidos N-Cíclicos/síntese química , Glicerol/química , Mesilatos/síntese química , Estrutura Molecular , Mutação , Isótopos de Nitrogênio/química , Óxidos de Nitrogênio/síntese química , Propanóis/química , Prótons , Rodopsinas Sensoriais/genética , Solventes/química , Temperatura , Água/química
2.
PLoS One ; 9(10): e110643, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25347537

RESUMO

A homologue of type I rhodopsin was found in the unicellular Gloeobacter violaceus PCC7421, which is believed to be primitive because of the lack of thylakoids and peculiar morphology of phycobilisomes. The Gloeobacter rhodopsin (GR) gene encodes a polypeptide of 298 amino acids. This gene is localized alone in the genome unlike cyanobacterium Anabaena opsin, which is clustered together with 14 kDa transducer gene. Amino acid sequence comparison of GR with other type I rhodopsin shows several conserved residues important for retinal binding and H+ pumping. In this study, the gene was expressed in Escherichia coli and bound all-trans retinal to form a pigment (λmax  = 544 nm at pH 7). The pKa of proton acceptor (Asp121) for the Schiff base, is approximately 5.9, so GR can translocate H+ under physiological conditions (pH 7.4). In order to prove the functional activity in the cell, pumping activity was measured in the sphaeroplast membranes of E. coli and one of Gloeobacter whole cell. The efficient proton pumping and rapid photocycle of GR strongly suggests that Gloeobacter rhodopsin functions as a proton pumping in its natural environment, probably compensating the shortage of energy generated by chlorophyll-based photosynthesis without thylakoids.


Assuntos
Cianobactérias/genética , Cianobactérias/metabolismo , Metabolismo Energético , Fotossíntese , Bombas de Próton/genética , Rodopsina/genética , Sequência de Aminoácidos , Transporte Biológico , Cianobactérias/classificação , Expressão Gênica , Luz , Dados de Sequência Molecular , Mutação , Filogenia , Bombas de Próton/metabolismo , Prótons , Rodopsina/metabolismo
4.
Biochemistry ; 43(30): 9636-46, 2004 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-15274618

RESUMO

Neurospora rhodopsin (NR, also known as NOP-1) is the first rhodopsin of the haloarchaeal type found in eucaryotes. NR demonstrates a very high degree of conservation of the amino acids that constitute the proton-conducting pathway in bacteriorhodopsin (BR), a light-driven proton pump of archaea. Nevertheless, NR does not appear to pump protons, suggesting the absence of the reprotonation switch that is necessary for the active transport. The photocycle of NR is much slower than that of BR, similar to the case of pharaonis phoborhodopsin (ppR), an archaeal photosensory protein. The functional and photochemical differences between NR and BR should be explained in the structural context. In this paper, we studied the structural changes of NR following retinal photoisomerization by means of low-temperature Fourier transform infrared (FTIR) spectroscopy and compared the obtained spectra with those for BR. For the spectroscopic analysis, we established the light-adaptation procedure for NR reconstituted into 1,2-dimyristoyl-sn-glycero- 3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-phosphate (DMPC/DMPA) liposomes, which takes approximately 2 orders of magnitudes longer than in BR. The structure of the retinal chromophore and the hydrogen-bonding strength of the Schiff base in NR are similar to those in BR. Unique spectral features are observed for the S-H stretching vibrations of cysteine and amide-I vibrations for NR before and after retinal isomerization. In NR, there are no spectral changes assignable to the amide bands of alpha helices. The most prominent difference between NR and BR was seen for the water O-D stretching vibrations (measured in D(2)O). Unlike for haloarchaeal rhodopsins such as BR and ppR, no O-D stretches of water under strong hydrogen-bonded conditions (<2400 cm(-1)) were observed in the NR(K) minus NR difference spectra. This suggests a unique hydrogen-bonded network of the Schiff base region, which may be responsible for the lack of the reprotonation switch in NR.


Assuntos
Proteínas de Transporte/química , Proteínas Fúngicas/química , Luz , Fotorreceptores Microbianos/química , Retinaldeído/química , Rodopsina/química , Água/química , Sequência de Aminoácidos , Proteínas Arqueais/química , Bacteriorodopsinas/química , Proteínas de Transporte/metabolismo , Cisteína/química , Congelamento , Proteínas Fúngicas/metabolismo , Isomerismo , Dados de Sequência Molecular , Fotorreceptores Microbianos/metabolismo , Proteínas Recombinantes/química , Rodopsina/metabolismo , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
5.
J Mol Biol ; 317(3): 471-8, 2002 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-11922678

RESUMO

The conformation of the structured EF interhelical loop of bacteriorhodopsin and its change in the M photointermediate were assessed by measuring the rate of reaction of 16 single engineered cysteine residues along the loop with water-soluble sulfhydryl reagents. The exposure to the bulk in the unilluminated state determined with the cysteine reaction correlated well with the degree of access to water calculated from the crystallographic structure of the loop. The EF-loop should be affected by the well-known outward tilt of helix F in the M and N intermediates of the photocycle. A second mutation in each cysteine mutant, the D96N residue replacement, allowed full conversion to the M state by illumination. The reaction rates measured under these conditions indicated that buried residues tend to become more exposed, and exposed residues become more buried in M. This is to be expected from tilt of helix F. However, the observation of increased exposure of four residues near the middle of the loop, where steric effects are only from other loop residues, indicate that the conformation of the EF-loop itself is changed. Thus, the motion of the loop in M is more complex than expected from simple tilt of helix F, and may include rotation that unwinds its twist.


Assuntos
Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Halobacterium salinarum/química , Bacteriorodopsinas/genética , Cisteína/genética , Cisteína/metabolismo , Escuridão , Dissulfetos , Ácido Ditionitrobenzoico , Cinética , Luz , Modelos Moleculares , Mutação/genética , Conformação Proteica , Engenharia de Proteínas , Piridinas , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA