Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Cardiovasc Imaging ; 40(7): 1543-1553, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38780711

RESUMO

PURPOSE: Exercise imaging using current modalities can be challenging. This was patient focused study to establish the feasibility and reproducibility of exercise-cardiovascular magnetic resonance imaging (EX-CMR) acquired during continuous in-scanner exercise in asymptomatic patients with primary mitral regurgitation (MR). METHODS: This was a prospective, feasibility study. Biventricular volumes/function, aortic flow volume, MR volume (MR-Rvol) and regurgitant fraction (MR-RF) were assessed at rest and during low- (Low-EX) and moderate-intensity exercise (Mod-EX) in asymptomatic patients with primary MR. RESULTS: Twenty-five patients completed EX-CMR without complications. Whilst there were no significant changes in the left ventricular (LV) volumes, there was a significant increase in the LVEF (rest 63 ± 5% vs. Mod-EX 68 ± 6%;p = 0.01). There was a significant reduction in the right ventricular (RV) end-systolic volume (rest 68 ml(60-75) vs. Mod-EX 46 ml(39-59);p < 0.001) and a significant increase in the RV ejection fraction (rest 55 ± 5% vs. Mod-EX 65 ± 8%;p < 0.001). Whilst overall, there were no significant group changes in the MR-Rvol and MR-RF, individual responses were variable, with MR-Rvol increasing by ≥ 15 ml in 4(16%) patients and decreasing by ≥ 15 ml in 9(36%) of patients. The intra- and inter-observer reproducibility of LV volumes and aortic flow measurements were excellent, including at Mod-EX. CONCLUSION: EX-CMR is feasible and reproducible in patients with primary MR. During exercise, there is an increase in the LV and RV ejection fraction, reduction in the RV end-systolic volume and a variable response of MR-Rvol and MR-RF. Understanding the individual variability in MR-Rvol and MR-RF during physiological exercise may be clinically important.


Assuntos
Teste de Esforço , Estudos de Viabilidade , Imagem Cinética por Ressonância Magnética , Insuficiência da Valva Mitral , Valva Mitral , Valor Preditivo dos Testes , Volume Sistólico , Função Ventricular Esquerda , Função Ventricular Direita , Humanos , Masculino , Feminino , Estudos Prospectivos , Insuficiência da Valva Mitral/fisiopatologia , Insuficiência da Valva Mitral/diagnóstico por imagem , Reprodutibilidade dos Testes , Pessoa de Meia-Idade , Idoso , Valva Mitral/diagnóstico por imagem , Valva Mitral/fisiopatologia , Doenças Assintomáticas , Variações Dependentes do Observador , Adulto
2.
J Magn Reson Imaging ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38344930

RESUMO

BACKGROUND: Four-dimensional-flow cardiac MR (4DF-MR) offers advantages in primary mitral regurgitation. The relationship between 4DF-MR-derived mitral regurgitant volume (MR-Rvol) and the post-operative left ventricular (LV) reverse remodeling has not yet been established. PURPOSE: To ascertain if the 4DF-MR-derived MR-Rvol correlates with the LV reverse remodeling in primary mitral regurgitation. STUDY TYPE: Prospective, single-center, two arm, interventional vs. nonintervention observational study. POPULATION: Forty-four patients (male N = 30; median age 68 [59-75]) with at least moderate primary mitral regurgitation; either awaiting mitral valve surgery (repair [MVr], replacement [MVR]) or undergoing "watchful waiting" (WW). FIELD STRENGTH/SEQUENCE: 5 T/Balanced steady-state free precession (bSSFP) sequence/Phase contrast imaging/Multishot echo-planar imaging pulse sequence (five shots). ASSESSMENT: Patients underwent transthoracic echocardiography (TTE), phase-contrast MR (PMRI), 4DF-MR and 6-minute walk test (6MWT) at baseline, and a follow-up PMRI and 6MWT at 6 months. MR-Rvol was quantified by PMRI, 4DF-MR, and TTE by one observer. The pre-operative MR-Rvol was correlated with the post-operative decrease in the LV end-diastolic volume index (LVEDVi). STATISTICAL TESTS: Included Student t-test/Mann-Whitney test/Fisher's exact test, Bland-Altman plots, linear regression analysis and receiver operating characteristic curves. Statistical significance was defined as P < 0.05. RESULTS: While Bland-Altman plots demonstrated similar bias between all the modalities, the limits of agreement were narrower between 4DF-MR and PMRI (bias 15; limits of agreement -36 mL to 65 mL), than between 4DF-MR and TTE (bias -8; limits of agreement -106 mL to 90 mL) and PMRI and TTE (bias -23; limits of agreement -105 mL to 59 mL). Linear regression analysis demonstrated a significant association between the MR-Rvol and the post-operative decrease in the LVEDVi, when the MR-Rvol was quantified by PMRI and 4DF-MR, but not by TTE (P = 0.73). 4DF-MR demonstrated the best diagnostic performance for reduction in the post-operative LVEDVi with the largest area under the curve (4DF-MR 0.83; vs. PMRI 0.78; and TTE 0.51; P = 0.89). DATA CONCLUSION: This study demonstrates the potential clinical utility of 4DF-MR in the assessment of primary mitral regurgitation. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 5.

3.
Sci Rep ; 13(1): 14640, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669972

RESUMO

Left ventricular fibrosis can be identified by late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) in some veteran athletes. We aimed to investigate prevalence of ventricular fibrosis in veteran athletes and associations with cardiac arrhythmia. 50 asymptomatic male endurance athletes were recruited. They underwent CMR imaging including volumetric analysis, bright blood (BB) and dark blood (DB) LGE, motion corrected (MOCO) quantitative stress and rest perfusion and T1/T2/extracellular volume mapping. Athletes underwent 12-lead electrocardiogram (ECG) and 24-h ECG. Myocardial fibrosis was identified in 24/50 (48%) athletes. All fibrosis was mid-myocardial in the basal-lateral left ventricular wall. Blood pressure was reduced in athletes without fibrosis compared to controls, but not athletes with fibrosis. Fibrotic areas had longer T2 time (44 ± 4 vs. 40 ± 2 ms, p < 0.0001) and lower rest myocardial blood flow (MBF, 0.5 ± 0.1 vs. 0.6 ± 0.1 ml/g/min, p < 0.0001). On 24-h ECG, athletes with fibrosis had greater burden of premature ventricular beats (0.3 ± 0.6 vs. 0.05 ± 0.2%, p = 0.03), with higher prevalence of ventricular couplets and triplets (33 vs. 8%, p = 0.02). In veteran endurance athletes, myocardial fibrosis is common and associated with an increased burden of ventricular ectopy. Possible mechanisms include inflammation and blood pressure. Further studies are needed to establish whether fibrosis increases risk of malignant arrhythmic events.


Assuntos
Complexos Ventriculares Prematuros , Veteranos , Humanos , Masculino , Meios de Contraste , Gadolínio , Doença do Sistema de Condução Cardíaco
4.
J Cardiovasc Magn Reson ; 25(1): 43, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37496072

RESUMO

BACKGROUND: When feasible, guidelines recommend mitral valve repair (MVr) over mitral valve replacement (MVR) to treat primary mitral regurgitation (MR), based upon historic outcome studies and transthoracic echocardiography (TTE) reverse remodeling studies. Cardiovascular magnetic resonance (CMR) offers reference standard biventricular assessment with superior MR quantification compared to TTE. Using serial CMR in primary MR patients, we aimed to investigate cardiac reverse remodeling and residual MR post-MVr vs MVR with chordal preservation. METHODS: 83 patients with ≥ moderate-severe MR on TTE were prospectively recruited. 6-min walk tests (6MWT) and CMR imaging including cine imaging, aortic/pulmonary through-plane phase contrast imaging, T1 maps and late-gadolinium-enhanced (LGE) imaging were performed at baseline and 6 months after mitral surgery or watchful waiting (control group). RESULTS: 72 patients completed follow-up (Controls = 20, MVr = 30 and MVR = 22). Surgical groups demonstrated comparable baseline cardiac indices and co-morbidities. At 6-months, MVr and MVR groups demonstrated comparable improvements in 6MWT distances (+ 57 ± 54 m vs + 64 ± 76 m respectively, p = 1), reduced indexed left ventricular end-diastolic volumes (LVEDVi; - 29 ± 21 ml/m2 vs - 37 ± 22 ml/m2 respectively, p = 0.584) and left atrial volumes (- 23 ± 30 ml/m2 and - 39 ± 26 ml/m2 respectively, p = 0.545). At 6-months, compared with controls, right ventricular ejection fraction was poorer post-MVr (47 ± 6.1% vs 53 ± 8.0% respectively, p = 0.01) compared to post-MVR (50 ± 5.7% vs 53 ± 8.0% respectively, p = 0.698). MVR resulted in lower residual MR-regurgitant fraction (RF) than MVr (12 ± 8.0% vs 21 ± 11% respectively, p = 0.022). Baseline and follow-up indices of diffuse and focal myocardial fibrosis (Native T1 relaxation times, extra-cellular volume and quantified LGE respectively) were comparable between groups. Stepwise multiple linear regression of indexed variables in the surgical groups demonstrated baseline indexed mitral regurgitant volume as the sole multivariate predictor of left ventricular (LV) end-diastolic reverse remodelling, baseline LVEDVi as the most significant independent multivariate predictor of follow-up LVEDVi, baseline indexed LV end-systolic volume as the sole multivariate predictor of follow-up LV ejection fraction and undergoing MVR (vs MVr) as the most significant (p < 0.001) baseline multivariate predictor of lower residual MR. CONCLUSION: In primary MR, MVR with chordal preservation may offer comparable cardiac reverse remodeling and functional benefits at 6-months when compared to MVr. Larger, multicenter CMR studies are required, which if the findings are confirmed could impact future surgical practice.


Assuntos
Insuficiência da Valva Mitral , Humanos , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/cirurgia , Insuficiência da Valva Mitral/patologia , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Volume Sistólico , Valor Preditivo dos Testes , Função Ventricular Direita , Fibrose
5.
Eur Heart J Cardiovasc Imaging ; 24(4): 426-434, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36458882

RESUMO

AIMS: Recently developed in-line automated cardiovascular magnetic resonance (CMR) myocardial perfusion mapping has been shown to be reproducible and comparable with positron emission tomography (PET), and can be easily integrated into clinical workflows. Bringing quantitative myocardial perfusion CMR into routine clinical care requires knowledge of sex- and age-specific normal values in order to define thresholds for disease detection. This study aimed to establish sex- and age-specific normal values for stress and rest CMR myocardial blood flow (MBF) in healthy volunteers. METHODS AND RESULTS: A total of 151 healthy volunteers recruited from two centres underwent adenosine stress and rest myocardial perfusion CMR. In-line automatic reconstruction and post processing of perfusion data were implemented within the Gadgetron software framework, creating pixel-wise perfusion maps. Rest and stress MBF were measured, deriving myocardial perfusion reserve (MPR) and were subdivided by sex and age. Mean MBF in all subjects was 0.62 ± 0.13 mL/g/min at rest and 2.24 ± 0.53 mL/g/min during stress. Mean MPR was 3.74 ± 1.00. Compared with males, females had higher rest (0.69 ± 0.13 vs. 0.58 ± 0.12 mL/g/min, P < 0.01) and stress MBF (2.41 ± 0.47 vs. 2.13 ± 0.54 mL/g/min, P = 0.001). Stress MBF and MPR showed significant negative correlations with increasing age (r = -0.43, P < 0.001 and r = -0.34, P < 0.001, respectively). CONCLUSION: Fully automated in-line CMR myocardial perfusion mapping produces similar normal values to the published CMR and PET literature. There is a significant increase in rest and stress MBF, but not MPR, in females and a reduction of stress MBF and MPR with advancing age, advocating the use of sex- and age-specific reference ranges for diagnostic use.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Masculino , Feminino , Humanos , Valores de Referência , Circulação Coronária/fisiologia , Espectroscopia de Ressonância Magnética , Fatores Etários , Imagem de Perfusão do Miocárdio/métodos , Valor Preditivo dos Testes
6.
Eur Heart J Cardiovasc Imaging ; 23(3): 352-362, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34694365

RESUMO

AIMS: Microvascular dysfunction in hypertrophic cardiomyopathy (HCM) is predictive of clinical decline, however underlying mechanisms remain unclear. Cardiac diffusion tensor imaging (cDTI) allows in vivo characterization of myocardial microstructure by quantifying mean diffusivity (MD), fractional anisotropy (FA) of diffusion, and secondary eigenvector angle (E2A). In this cardiac magnetic resonance (CMR) study, we examine associations between perfusion and cDTI parameters to understand the sequence of pathophysiology and the interrelation between vascular function and underlying microstructure. METHODS AND RESULTS: Twenty HCM patients underwent 3.0T CMR which included: spin-echo cDTI, adenosine stress and rest perfusion mapping, cine-imaging, and late gadolinium enhancement (LGE). Ten controls underwent cDTI. Myocardial perfusion reserve (MPR), MD, FA, E2A, and wall thickness were calculated per segment and further divided into subendocardial (inner 50%) and subepicardial (outer 50%) regions. Segments with wall thickness ≤11 mm, MPR ≥2.2, and no visual LGE were classified as 'normal'. Compared to controls, 'normal' HCM segments had increased MD (1.61 ± 0.09 vs. 1.46 ± 0.07 × 10-3 mm2/s, P = 0.02), increased E2A (60 ± 9° vs. 38 ± 12°, P < 0.001), and decreased FA (0.29 ± 0.04 vs. 0.35 ± 0.02, P = 0.002). Across all HCM segments, subendocardial regions had higher MD and lower MPR than subepicardial (MDendo 1.61 ± 0.08 × 10-3 mm2/s vs. MDepi 1.56 ± 0.18 × 10-3 mm2/s, P = 0.003, MPRendo 1.85 ± 0.83, MPRepi 2.28 ± 0.87, P < 0.0001). CONCLUSION: In HCM patients, even in segments with normal wall thickness, normal perfusion, and no scar, diffusion is more isotropic than in controls, suggesting the presence of underlying cardiomyocyte disarray. Increased E2A suggests the myocardial sheetlets adopt hypercontracted angulation in systole. Increased MD, most notably in the subendocardium, is suggestive of regional remodelling which may explain the reduced subendocardial blood flow.


Assuntos
Cardiomiopatia Hipertrófica , Imagem de Tensor de Difusão , Meios de Contraste , Gadolínio , Humanos , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Miocárdio/patologia
7.
J Cardiovasc Magn Reson ; 23(1): 37, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33731141

RESUMO

BACKGROUND: Adenosine stress perfusion cardiovascular magnetic resonance (CMR) is commonly used in the assessment of patients with suspected ischaemia. Accepted protocols recommend administration of adenosine at a dose of 140 µg/kg/min increased up to 210 µg/kg/min if required. Conventionally, adequate stress has been assessed using change in heart rate, however, recent studies have suggested that these peripheral measurements may not reflect hyperaemia and can be blunted, in particular, in patients with heart failure. This study looked to compare stress myocardial blood flow (MBF) and haemodynamic response with different dosing regimens of adenosine during stress perfusion CMR in patients and healthy controls. METHODS: 20 healthy adult subjects were recruited as controls to compare 3 adenosine perfusion protocols: standard dose (140 µg/kg/min for 4 min), high dose (210 µg/kg/min for 4 min) and long dose (140 µg/kg/min for 8 min). 60 patients with either known or suspected coronary artery disease (CAD) or with heart failure and different degrees of left ventricular (LV) dysfunction underwent adenosine stress with standard and high dose adenosine within the same scan. All studies were carried out on a 3 T CMR scanner. Quantitative global myocardial perfusion and haemodynamic response were compared between doses. RESULTS: In healthy controls, no significant difference was seen in stress MBF between the 3 protocols. In patients with known or suspected CAD, and those with heart failure and mild systolic impairment (LV ejection fraction (LVEF) ≥ 40%) no significant difference was seen in stress MBF between standard and high dose adenosine. In those with LVEF < 40%, there was a significantly higher stress MBF following high dose adenosine compared to standard dose (1.33 ± 0.46 vs 1.10 ± 0.47 ml/g/min, p = 0.004). Non-responders to standard dose adenosine (defined by an increase in heart rate (HR) < 10 bpm) had a significantly higher stress HR following high dose (75 ± 12 vs 70 ± 14 bpm, p = 0.034), but showed no significant difference in stress MBF. CONCLUSIONS: Increasing adenosine dose from 140 to 210 µg/kg/min leads to increased stress MBF in patients with significantly impaired LV systolic function. Adenosine dose in clinical perfusion assessment may need to be increased in these patients.


Assuntos
Adenosina/administração & dosagem , Circulação Coronária , Hiperemia/fisiopatologia , Imagem Cinética por Ressonância Magnética , Imagem de Perfusão do Miocárdio , Vasodilatadores/administração & dosagem , Disfunção Ventricular Esquerda/diagnóstico por imagem , Função Ventricular Esquerda , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Volume Sistólico , Sístole , Disfunção Ventricular Esquerda/fisiopatologia
8.
Radiol Artif Intell ; 2(6): e200009, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33330849

RESUMO

PURPOSE: To develop a deep neural network-based computational workflow for inline myocardial perfusion analysis that automatically delineates the myocardium, which improves the clinical workflow and offers a "one-click" solution. MATERIALS AND METHODS: In this retrospective study, consecutive adenosine stress and rest perfusion scans were acquired from three hospitals between October 1, 2018 and February 27, 2019. The training and validation set included 1825 perfusion series from 1034 patients (mean age, 60.6 years ± 14.2 [standard deviation]). The independent test set included 200 scans from 105 patients (mean age, 59.1 years ± 12.5). A convolutional neural network (CNN) model was trained to segment the left ventricular cavity, myocardium, and right ventricle by processing an incoming time series of perfusion images. Model outputs were compared with manual ground truth for accuracy of segmentation and flow measures derived on a global and per-sector basis with t test performed for statistical significance. The trained models were integrated onto MR scanners for effective inference. RESULTS: The mean Dice ratio of automatic and manual segmentation was 0.93 ± 0.04. The CNN performed similarly to manual segmentation and flow measures for mean stress myocardial blood flow (MBF; 2.25 mL/min/g ± 0.59 vs 2.24 mL/min/g ± 0.59, P = .94) and mean rest MBF (1.08 mL/min/g ± 0.23 vs 1.07 mL/min/g ± 0.23, P = .83). The per-sector MBF values showed no difference between the CNN and manual assessment (P = .92). A central processing unit-based model inference on the MR scanner took less than 1 second for a typical perfusion scan of three slices. CONCLUSION: The described CNN was capable of cardiac perfusion mapping and integrated an automated inline implementation on the MR scanner, enabling one-click analysis and reporting in a manner comparable to manual assessment. Supplemental material is available for this article. © RSNA, 2020.

9.
Quant Imaging Med Surg ; 10(9): 1837-1851, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32879861

RESUMO

BACKGROUND: Cardiovascular magnetic resonance (CMR) image acquisition techniques during exercise typically requires either transient cessation of exercise or complex post-processing, potentially compromising clinical utility. We evaluated the feasibility and reproducibility of a navigated image acquisition method for ventricular volumes assessment during continuous physical exercise. METHODS: Ten healthy volunteers underwent supine cycle ergometer (Lode) exercise CMR on two separate occasions using a free-breathing, multi-shot, navigated, balanced steady-state free precession cine pulse sequence. Images were acquired at 3-stages, baseline and during steady-state exercise at 55% and 75% maximal heart rate (HRmax), based on a prior supine cardiopulmonary exercise test. Intra-and inter-observer variability and inter-scan reproducibility were derived. Clinical feasibility was tested in a separate cohort of patients with severe mitral regurgitation (n=6). RESULTS: End-diastolic volume (EDV) of both LV and RV decreased during exercise at 55% and 75% HRmax, although a reduction in RVEDV index was only observed at 75% HRmax. Ejection fractions (EF) for both ventricles were significantly higher at 75% HRmax compared to their respective baselines (LVEF 68%±3% vs. 58%±5%, P=0.001; RVEF 66%±4% vs. 58%±7%, P=0.02). Intra-observer and inter-observer reproducibility of LV parameters was excellent at all 3-stages. Although measurements of RVESV were more variable during exercise, the reproducibility of both RVEF and RV cardiac index was excellent (CV <10%). Inter-scan LV and RV ejection fraction were highly reproducible at all 3 stages, although inter-scan reproducibility of indexed RVESV was only moderate. The protocol was well tolerated by all patients. CONCLUSIONS: Exercise CMR using a free-breathing, multi-shot, navigated cine imaging method allows simultaneous assessment of left and right ventricular volumes during continuous exercise. Intra- and inter-observer reproducibility were excellent. Inter-scan LV and RV ejection fraction were also highly reproducible.

10.
Magn Reson Med ; 83(2): 712-730, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31441550

RESUMO

PURPOSE: Quantitative myocardial perfusion mapping has advantages over qualitative assessment, including the ability to detect global flow reduction. However, it is not clinically available and remains a research tool. Building upon the previously described imaging sequence, this study presents algorithm and implementation of an automated solution for inline perfusion flow mapping with step by step performance characterization. METHODS: Proposed workflow consists of motion correction (MOCO), arterial input function blood detection, intensity to gadolinium concentration conversion, and pixel-wise mapping. A distributed kinetics model, blood-tissue exchange model, is implemented, computing pixel-wise maps of myocardial blood flow (mL/min/g), permeability-surface-area product (mL/min/g), blood volume (mL/g), and interstitial volume (mL/g). RESULTS: Thirty healthy subjects (11 men; 26.4 ± 10.4 years) were recruited and underwent adenosine stress perfusion cardiovascular MR. Mean MOCO quality score was 3.6 ± 0.4 for stress and 3.7 ± 0.4 for rest. Myocardial Dice similarity coefficients after MOCO were significantly improved (P < 1e-6), 0.87 ± 0.05 for stress and 0.86 ± 0.06 for rest. Arterial input function peak gadolinium concentration was 4.4 ± 1.3 mmol/L at stress and 5.2 ± 1.5 mmol/L at rest. Mean myocardial blood flow at stress and rest were 2.82 ± 0.47 mL/min/g and 0.68 ± 0.16 mL/min/g, respectively. The permeability-surface-area product was 1.32 ± 0.26 mL/min/g at stress and 1.09 ± 0.21 mL/min/g at rest (P < 1e-3). Blood volume was 12.0 ± 0.8 mL/100 g at stress and 9.7 ± 1.0 mL/100 g at rest (P < 1e-9), indicating good adenosine vasodilation response. Interstitial volume was 20.8 ± 2.5 mL/100 g at stress and 20.3 ± 2.9 mL/100 g at rest (P = 0.50). CONCLUSIONS: An inline perfusion flow mapping workflow is proposed and demonstrated on normal volunteers. Initial evaluation demonstrates this fully automated solution for the respiratory MOCO, arterial input function left ventricle mask detection, and pixel-wise mapping, from free-breathing myocardial perfusion imaging.


Assuntos
Algoritmos , Coração/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Imagem de Perfusão do Miocárdio/métodos , Adolescente , Adulto , Área Sob a Curva , Automação , Meios de Contraste , Circulação Coronária , Feminino , Voluntários Saudáveis , Frequência Cardíaca , Ventrículos do Coração , Humanos , Processamento de Imagem Assistida por Computador , Cinética , Masculino , Movimento (Física) , Reconhecimento Automatizado de Padrão , Adulto Jovem
11.
Circ Cardiovasc Imaging ; 12(7): e008872, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31269811

RESUMO

BACKGROUND: Fabry disease (FD) is an X-linked lysosomal storage disease resulting in tissue accumulation of sphingolipids. Key myocardial processes that lead to adverse outcomes in FD include storage, hypertrophy, inflammation, and fibrosis. These are quantifiable by multiparametric cardiovascular magnetic resonance. Recent developments in cardiovascular magnetic resonance perfusion mapping allow rapid in-line perfusion quantification permitting broader clinical application, including the assessment of microvascular dysfunction. We hypothesized that microvascular dysfunction in FD would be associated with storage, fibrosis, and edema. METHODS: A prospective, observational study of 44 FD patients (49 years, 43% male, 24 [55%] with left ventricular hypertrophy [LVH]) and 27 healthy controls with multiparametric cardiovascular magnetic resonance including vasodilator stress perfusion mapping. Myocardial blood flow (MBF) was measured and its associations with other processes investigated. RESULTS: Compared with LVH- FD, LVH+ FD had higher left ventricular ejection fraction (73% versus 68%), more late gadolinium enhancement (85% versus 15%), and a lower stress MBF (1.76 versus 2.36 mL/g per minute). The reduction in stress MBF was more pronounced in the subendocardium than subepicardium. LVH- FD had lower stress MBF than controls (2.36 versus 3.00 mL/g per minute; P=0.002). Across all FD, late gadolinium enhancement and low native T1 were independently associated with reduced stress MBF. On a per-segment basis, stress MBF was independently associated with wall thickness, T2, extracellular volume fraction, and late gadolinium enhancement. CONCLUSIONS: FD patients have reduced perfusion, particularly in the subendocardium with greater reductions with LVH, storage, edema, and scar. Perfusion is reduced even without LVH suggesting it is an early disease marker.


Assuntos
Doença de Fabry/complicações , Coração/diagnóstico por imagem , Coração/fisiopatologia , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Disfunção Ventricular Esquerda/complicações , Disfunção Ventricular Esquerda/diagnóstico por imagem , Adulto , Doença de Fabry/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Disfunção Ventricular Esquerda/fisiopatologia
12.
J Cardiovasc Magn Reson ; 20(1): 48, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29983119

RESUMO

BACKGROUND: Non-invasive assessment of myocardial ischaemia is a cornerstone of the diagnosis of coronary artery disease. Measurement of myocardial blood flow (MBF) using positron emission tomography (PET) is the current reference standard for non-invasive quantification of myocardial ischaemia. Dynamic myocardial perfusion cardiovascular magnetic resonance (CMR) offers an alternative to PET and a recently developed method with automated inline perfusion mapping has shown good correlation of MBF values between CMR and PET. This study assessed the repeatability of myocardial perfusion mapping by CMR in healthy subjects. METHODS: Forty-two healthy subjects were recruited and underwent adenosine stress and rest perfusion CMR on two visits. Scans were repeated with a minimum interval of 7 days. Intrastudy rest and stress MBF repeatability were assessed with a 15-min interval between acquisitions. Interstudy rest and stress MBF and myocardial perfusion reserve (MPR) were measured for global myocardium and regionally for coronary territories and slices. RESULTS: There was no significant difference in intrastudy repeated global rest MBF (0.65 ± 0.13 ml/g/min vs 0.62 ± 0.12 ml/g/min, p = 0.24, repeatability coefficient (RC) =24%) or stress (2.89 ± 0.56 ml/g/min vs 2.83 ± 0.64 ml/g/min, p = 0.41, RC = 29%) MBF. No significant difference was seen in interstudy repeatability for global rest MBF (0.64 ± 0.13 ml/g/min vs 0.64 ± 0.15 ml/g/min, p = 0.80, RC = 32%), stress MBF (2.71 ± 0.61 ml/g/min vs 2.55 ± 0.57 ml/g/min, p = 0.12, RC = 33%) or MPR (4.24 ± 0.69 vs 3.73 ± 0.76, p = 0.25, RC = 36%). Regional repeatability was good for stress (RC = 30-37%) and rest MBF (RC = 32-36%) but poorer for MPR (RC = 35-43%). Within subject coefficient of variation was 8% for rest and 11% for stress within the same study, and 11% for rest and 12% for stress between studies. CONCLUSIONS: Fully automated, inline, myocardial perfusion mapping by CMR shows good repeatability that is similar to the published PET literature. Both rest and stress MBF show better repeatability than MPR, particularly in regional analysis.


Assuntos
Circulação Coronária , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagem de Perfusão do Miocárdio/métodos , Adenosina/administração & dosagem , Adulto , Automação , Velocidade do Fluxo Sanguíneo , Feminino , Voluntários Saudáveis , Humanos , Masculino , Variações Dependentes do Observador , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Vasodilatadores/administração & dosagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA