Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Eur J Pharmacol ; 845: 1-7, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30529197

RESUMO

Sazetidine-A [6-(5(((S)-azetidine-2-yl)methoxy)pyridine-3-yl)hex-5-yn-1-ol] is a selective α4ß2 nicotinic receptor desensitizing agent and partial agonist. Sazetidine-A has been shown in our previous studies to significantly reduce nicotine and alcohol self-administration in rats. The question arises whether sazetidine-A would reduce self-administration of other addictive drugs as well. Nicotinic receptors on the dopaminergic neurons in the ventral tegmental area play an important role in controlling the activity of these neurons and release of dopamine in the nucleus accumbens, which is critical mechanism for reinforcing value of drugs of abuse. Previously, we showed that the nonspecific nicotinic antagonist mecamylamine significantly reduces cocaine self-administration in rats. In this study, we acutely administered systemically sazetidine-A and two other selective α4ß2 nicotinic receptor-desensitizing agents, VMY-2-95 and YL-2-203, to young adult female Sprague-Dawley rats and determined their effects on IV self-administration of cocaine and methamphetamine. Cocaine self-administration was significantly reduced by 0.3 mg/kg of sazetidine-A. In another set of rats, sazetidine-A (3 mg/kg) significantly reduced methamphetamine self-administration. VMY-2-95 significantly reduced both cocaine and methamphetamine self-administration with threshold effective doses of 3 and 0.3 mg/kg, respectively. In contrast, YL-2-203 did not significantly reduce cocaine self-administration at the same dose range and actually significantly increased cocaine self-administration at the 1 mg/kg dose. YL-2-203 (3 mg/kg) did significantly decrease methamphetamine self-administration. Sazetidine-A and VMY-2-95 are promising candidates to develop as new treatments to help addicts successfully overcome a variety of addictions including tobacco, alcohol as well as the stimulant drugs cocaine and methamphetamine.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/tratamento farmacológico , Azetidinas/farmacologia , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Agonistas Nicotínicos/farmacologia , Piridinas/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Animais , Azetidinas/administração & dosagem , Cocaína/administração & dosagem , Feminino , Metanfetamina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Piridinas/administração & dosagem , Ratos , Ratos Sprague-Dawley , Autoadministração
2.
Allergy Asthma Proc ; 39(2): 143-152, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29490770

RESUMO

BACKGROUND: Allergic and autoimmune diseases comprise a group of inflammatory disorders caused by aberrant immune responses in which CD25+ Forkhead box P3-positive (FOXP3+) T regulatory (Treg) cells that normally suppress inflammatory events are often poorly functioning. This has stimulated an intensive investigative effort to find ways of increasing Tregs as a method of therapy for these conditions. One such line of investigation includes the study of how ligation of Toll-like receptors (TLRs) by CpG oligonucleotides (ODN) results in an immunostimulatory cascade that leads to induction of T-helper (Th) type 1 and Treg-type immune responses. OBJECTIVE: The present study investigated the mechanisms by which calf thymus mammalian double-stranded DNA (CT-DNA) and a synthetic methylated DNA CpG ODN sequence suppress in vitro lymphoproliferative responses to antigens, mitogens, and alloantigens when measured by [3H]-thymidine incorporation and promote FoxP3 expression in human CD4+ T cells in the presence of transforming growth factor (TGF) beta and interleukin-2 (IL-2). METHODS: Lymphoproliferative responses of peripheral blood mononuclear cells from four healthy subjects or nine subjects with systemic lupus erythematosus to CT-DNA or phytohemagglutinin (PHA) was measured by tritiated thymidine ([3H]-TdR) incorporation expressed as a stimulation index. Mechanisms of immunosuppressive effects of CT-DNA were evaluated by measurement of the degree of inhibition to lymphoproliferative responses to streptokinase-streptodornase, phytohemagglutinin (PHA), concanavalin A (Con A), pokeweed mitogen (PWM), or alloantigens by a Con A suppressor assay. The effects of CpG methylation on induction of FoxP3 expression in human T cells were measured by comparing inhibitory responses of synthetic methylated and nonmethylated 8-mer CpG ODN sequences by using cell sorting, in vitro stimulation, and suppressor assay. RESULTS: Here, we showed that CT-DNA and a synthetic methylated DNA 8-mer sequence could suppress antigen-, mitogen-, and alloantigen-induced lymphoproliferation in vitro when measured by [3H]-thymidine. The synthetic methylated DNA CpG ODN but not an unmethylated CpG ODN sequence was shown to promote FoxP3 expression in human CD4+ T cells in the presence of TGF beta and IL-2. The induction of FoxP3+ suppressor cells is dose dependent and offers a potential clinical therapeutic application in allergic and autoimmune and inflammatory diseases. CONCLUSION: The use of this methylated CpG ODN offers a broad clinical application as a novel therapeutic method for Treg induction and, because of its low cost and small size, should facilitate delivery via nasal, respiratory, gastrointestinal routes, and/or by injection, routes of administration important for vaccine delivery to target sites responsible for respiratory, gastrointestinal, and systemic forms of allergic and autoimmune disease.


Assuntos
Linfócitos T CD4-Positivos/imunologia , DNA/imunologia , Imunoterapia/métodos , Lúpus Eritematoso Sistêmico/imunologia , Linfócitos T Reguladores/imunologia , Animais , Bovinos , Proliferação de Células , Células Cultivadas , Ilhas de CpG/genética , DNA/genética , Metilação de DNA/imunologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/terapia , Terapia de Imunossupressão , Isoantígenos/imunologia , Lúpus Eritematoso Sistêmico/terapia , Ativação Linfocitária , Fator de Crescimento Transformador beta/metabolismo
3.
Oncotarget ; 8(48): 83457-83468, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-29137356

RESUMO

Epigenetic regulation of gene expression is an emerging target to treat several human diseases including cancers. In cancers, expressions of many tumor suppressor genes are suppressed by hyper-methylation in their regulatory regions. Herein, we describe a novel carbazole SH-I-14 that decreased the level of the acetyl-STAT3 at the K685 residue. Mutation analysis revealed that SH-I-14 disrupted STAT3-DNMT1 interaction by removing acetyl group from K685 of STAT3. Finally, the inhibition of STAT3-DNMT1 interaction by SH-I-14 resulted in re-expression of tumor suppressor genes such as VHL and PDLIM4 through de-methylation of their promoter regions. In addition, SH-I-14 showed anti-proliferative effect in triple-negative breast cancer (TNBC) cell lines in vitro and anti-tumor effect in a mouse xenograft model of MDA-MB-231 tumor. Taken together, our results suggest that targeting acetyl-STAT3 (K685) provides potential therapeutic opportunity to treat a subset of human cancers.

4.
Breast Cancer Res Treat ; 166(3): 681-693, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28808806

RESUMO

PURPOSE: We previously identified small molecules that fit into a BRCA1-binding pocket within estrogen receptor-alpha (ERα), mimic the ability of BRCA1 to inhibit ERα activity ("BRCA1-mimetics"), and overcome antiestrogen resistance. One such compound, the hydrochloride salt of NSC35446 ("NSC35446.HCl"), also inhibited the growth of antiestrogen-resistant LCC9 tumor xenografts. The purpose of this study was to investigate the down-stream effects of NSC35446.HCl and its mechanism of action. METHODS: Here, we studied antiestrogen-resistant (LCC9, T47DCO, MCF-7/RR, LY2), ERα-negative (MDA-MB-231, HCC1806, MDA-MB-468), and antiestrogen-sensitive (MCF-7) cell lines. Techniques utilized include RNA-seq, qRT-PCR, cell growth analysis, cell-cycle analysis, Western blotting, luciferase reporter assays, TUNEL assays, in silico analysis of the IKKB gene, and ChIP assays. RESULTS: SC35446.HCl inhibited proliferation and induced apoptosis in antiestrogen-resistant LCC9, T47DCO, MCF-7/RR, and LY2 cells but not in ERα-negative breast cancer cell lines. IKKB (IKKß, IKBKB), an upstream activator of NF-κB, was identified as a BRCA1-mimetic-regulated gene based on an RNA-seq analysis. NSC35446.HCl inhibited IKKB, IKKA, and IKKG/NEMO mRNA and protein expression in LCC9 cells. NSC35446.HCl also inhibited NF-κB activity and expression of NF-κB target genes. In silico analysis of the IKKB promoter identified nine estrogen response element (ERE) half-sites and one ERE-like full-site. ChIP assays revealed that ERα was recruited to the ERE-like full-site and five of the nine half-sites and that ERα recruitment was inhibited by NSC35446.HCl in LCC9 and T47DCO cells. CONCLUSIONS: These studies identify functional EREs in the IKKB promoter and identify IKKB as an ERα and NSC35446.HCl-regulated gene, and they suggest that NF-κB and IKKB, which were previously linked to antiestrogen resistance, are targets for NSC35446.HCl in reversing antiestrogen resistance.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Antagonistas de Estrogênios/administração & dosagem , Receptor alfa de Estrogênio/genética , Quinase I-kappa B/genética , Apoptose/genética , Proteína BRCA1/antagonistas & inibidores , Proteína BRCA1/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Estrogênios/genética , Estrogênios/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , NF-kappa B/genética , Regiões Promotoras Genéticas
5.
Psychopharmacology (Berl) ; 234(17): 2517-2523, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28555315

RESUMO

RATIONALE AND OBJECTIVES: Desensitization of neuronal nicotinic acetylcholine receptors holds promise as an effective treatment of tobacco addiction. Previously, we found that sazetidine-A (Saz-A), which selectively desensitizes α4ß2 nicotinic receptors, significantly decreased intravenous (IV) nicotine self-administration (SA) in rats with an effective dose of 3 mg/kg in acute and repeated injection studies. We also found that chronic infusions of Saz-A at doses of 2 and 6 mg/kg/day significantly reduced nicotine SA in rats. In continuing studies, we have characterized other Saz-A analogs, YL-2-203 and VMY-2-95, to determine their efficacies in reducing nicotine SA in rats. METHODS: Young adult female Sprague-Dawley rats were fitted with IV catheters and were trained for nicotine SA (0.03 mg/kg/infusion) on a fixed ratio 1 schedule for ten sessions. The same rats were also implanted subcutaneously with osmotic minipumps to continually deliver 2 or 6 mg/kg body weight YL-2-203, VMY-2-95, or saline for four consecutive weeks. RESULTS: Chronic administration of VMY-2-95 at doses of 2 and 6 mg/kg/day caused significant (p < 0.01) decreases in nicotine SA over the 2 weeks of continued nicotine SA and for the 1-week period of resumed access after a week of enforced abstinence, whereas chronic administration of YL-2-203 at the same doses was not found to be effective. CONCLUSIONS: These studies, together with our previous studies of Saz-A, revealed a spectrum of efficacies for these α4ß2 nicotinic receptor desensitizing agents and provide a path forward for the most effective compounds to be further developed as possible aids to smoking cessation.


Assuntos
Azetidinas/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Nicotina/administração & dosagem , Antagonistas Nicotínicos/administração & dosagem , Piridinas/administração & dosagem , Receptores Nicotínicos , Animais , Relação Dose-Resposta a Droga , Feminino , Agonistas Nicotínicos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Autoadministração
6.
Bioorg Med Chem ; 25(7): 2226-2233, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28284864

RESUMO

The treatment of triple negative breast cancer (TNBC) is a significant challenge to cancer research. The lack of hormone receptors limits the treatment options available to patients with this diagnosis, forcing them to endure prolonged radiation and chemotherapy. Anti-angiogenesis is a chemotherapeutic strategy that targets the vasculature of tumors. Combretastatin A-4 (CA-4) is a well-known vasculature-disrupting agent, which has been shown to effectively kill a variety of cancers through inhibition of tubulin polymerization. Due to its toxicity, small molecule analogues of CA-4 have been sought out. We have designed a novel dual action CA-4 prodrug, YK-5-252, which releases the drug through a disulfide bond cleavage mechanism and contains a near-infrared (NIR) fluorophore, which allows fluorescence monitoring of cleavage. This disulfide linkage causes CA-4 to become effective only when released by glutathione (GSH) reducing the toxicity of the drug while simultaneously releasing the NIR fluorophore. Therefore the prodrug, YK-5-252, represents a novel CA-4 analogue which has reduced toxicity and can be used for theranostics imaging.


Assuntos
Benzopiranos/uso terapêutico , Estilbenos/uso terapêutico , Nanomedicina Teranóstica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Benzopiranos/química , Benzopiranos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citometria de Fluxo , Humanos , Espectrometria de Massas , Espectroscopia de Prótons por Ressonância Magnética , Estilbenos/química , Estilbenos/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Moduladores de Tubulina
7.
Bioconjug Chem ; 27(9): 1981-90, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-26965452

RESUMO

Cytotoxic chemotherapies are used to treat breast cancer, but are limited by systemic toxicity. The key to addressing this important issue is the development of a nontoxic, tissue selective, and molecular specific delivery system. In order to potentially increase the therapeutic index of clinical reagents, we designed an Aminopeptidase P (APaseP) targeting tissue-specific construct conjugated to a homing peptide for selective binding to human breast-derived cancer cells. Homing peptides are short amino acid sequences derived from phage display libraries that have the unique property of localizing to specific organs. Our molecular construct allows for tissue-specific drug delivery, by binding to APaseP in the vascular endothelium. The breast homing peptide evaluated in our studies is a cyclic nine-amino-acid peptide with the sequence CPGPEGAGC, referred to as PEGA. We show by confocal microscopy that the PEGA peptide and similar peptide conjugates distribute to human breast tissue xenograft specifically and evaluate the interaction with the membrane-bound proline-specific APaseP (KD = 723 ± 3 nM) by binding studies. To achieve intracellular breast cancer cell delivery, the incorporation of the Tat sequence, a cell-penetrating motif derived from HIV, was conjugated with the fluorescently labeled PEGA peptide sequence. Ultimately, tissue specific peptides and their conjugates can enhance drug delivery and treatment by their ability to discriminate between tissue types. Tissue specific conjugates as we have designed may be valuable tools for drug delivery and visualization, including the potential to treat breast cancer, while simultaneously minimizing systemic toxicity.


Assuntos
Aminopeptidases/metabolismo , Mama/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Animais , Mama/patologia , Transformação Celular Neoplásica , Corantes Fluorescentes/química , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Especificidade de Órgãos
8.
PLoS One ; 9(12): e114260, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25479232

RESUMO

BACKGROUND: The erythroblastosis virus E26 transforming sequences (ETS) family of transcription factors consists of a highly conserved group of genes that play important roles in cellular proliferation, differentiation, migration and invasion. Chromosomal translocations fusing ETS factors to promoters of androgen responsive genes have been found in prostate cancers, including the most clinically aggressive forms. ERG and ETV1 are the most commonly translocated ETS proteins. Over-expression of these proteins in prostate cancer cells results in a more invasive phenotype. Inhibition of ETS activity by small molecule inhibitors may provide a novel method for the treatment of prostate cancer. METHODS AND FINDINGS: We recently demonstrated that the small molecule YK-4-279 inhibits biological activity of ETV1 in fusion-positive prostate cancer cells leading to decreased motility and invasion in-vitro. Here, we present data from an in-vivo mouse xenograft model. SCID-beige mice were subcutaneously implanted with fusion-positive LNCaP-luc-M6 and fusion-negative PC-3M-luc-C6 tumors. Animals were treated with YK-4-279, and its effects on primary tumor growth and lung metastasis were evaluated. YK-4-279 treatment resulted in decreased growth of the primary tumor only in LNCaP-luc-M6 cohort. When primary tumors were grown to comparable sizes, YK-4-279 inhibited tumor metastasis to the lungs. Expression of ETV1 target genes MMP7, FKBP10 and GLYATL2 were reduced in YK-4-279 treated animals. ETS fusion-negative PC-3M-luc-C6 xenografts were unresponsive to the compound. Furthermore, YK-4-279 is a chiral molecule that exists as a racemic mixture of R and S enantiomers. We established that (S)-YK-4-279 is the active enantiomer in prostate cancer cells. CONCLUSION: Our results demonstrate that YK-4-279 is a potent inhibitor of ETV1 and inhibits both the primary tumor growth and metastasis of fusion positive prostate cancer xenografts. Therefore, YK-4-279 or similar compounds may be evaluated as a potential therapeutic tool for treatment of human prostate cancer at different stages.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Indóis/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias da Próstata/tratamento farmacológico , Fatores de Transcrição/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Masculino , Camundongos , Metástase Neoplásica , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transativadores/genética , Fatores de Transcrição/genética , Regulador Transcricional ERG , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Med Chem ; 57(24): 10290-303, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25432018

RESUMO

EWS-FLI1 is an oncogenic fusion protein implicated in the development of Ewing's sarcoma family tumors (ESFT). Using our previously reported lead compound 2 (YK-4-279), we designed and synthesized a focused library of analogues. The functional inhibition of the analogues was measured by an EWS-FLI1/NR0B1 reporter luciferase assay and a paired cell screening approach measuring effects on growth inhibition for human cells containing EWS-FLI1 (TC32 and TC71) and control PANC1 cell lines devoid of the oncoprotein. Our data revealed that substitution of electron donating groups at the para-position on the phenyl ring was the most favorable for inhibition of EWS-FLI1 by analogs of 2. Compound 9u (with a dimethylamino substitution) was the most active inhibitor with GI50 = 0.26 ± 0.1 µM. Further, a correlation of growth inhibition (EWS-FLI1 expressing TC32 cells) and the luciferase reporter activity was established (R(2) = 0.84). Finally, we designed and synthesized a biotinylated analogue and determined the binding affinity for recombinant EWS-FLI1 (Kd = 4.8 ± 2.6 µM).


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indóis/farmacologia , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteína Proto-Oncogênica c-fli-1/antagonistas & inibidores , Proteína EWS de Ligação a RNA/antagonistas & inibidores , Sarcoma de Ewing/tratamento farmacológico , Compostos de Anilina/síntese química , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Indóis/síntese química , Luciferases/metabolismo , Modelos Moleculares , Estrutura Molecular , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Mol Endocrinol ; 28(12): 1971-86, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25264941

RESUMO

CONTEXT: Resistance to conventional antiestrogens is a major cause of treatment failure and, ultimately, death in breast cancer. OBJECTIVE: The objective of the study was to identify small-molecule estrogen receptor (ER)-α antagonists that work differently from tamoxifen and other selective estrogen receptor modulators. DESIGN: Based on in silico screening of a pharmacophore database using a computed model of the BRCA1-ER-α complex (with ER-α liganded to 17ß-estradiol), we identified a candidate group of small-molecule compounds predicted to bind to a BRCA1-binding interface separate from the ligand-binding pocket and the coactivator binding site of ER-α. Among 40 candidate compounds, six inhibited estradiol-stimulated ER-α activity by at least 50% in breast carcinoma cells, with IC50 values ranging between 3 and 50 µM. These ER-α inhibitory compounds were further studied by molecular and cell biological techniques. RESULTS: The compounds strongly inhibited ER-α activity at concentrations that yielded little or no nonspecific toxicity, but they produced only a modest inhibition of progesterone receptor activity. Importantly, the compounds blocked proliferation and inhibited ER-α activity about equally well in antiestrogen-sensitive and antiestrogen-resistant breast cancer cells. Representative compounds disrupted the interaction of BRCA1 and ER-α in the cultured cells and blocked the interaction of ER-α with the estrogen response element. However, the compounds had no effect on the total cellular ER-α levels. CONCLUSIONS: These findings suggest that we have identified a new class of ER-α antagonists that work differently from conventional antiestrogens (eg, tamoxifen and fulvestrant).


Assuntos
Antagonistas de Estrogênios/farmacologia , Moduladores de Receptor Estrogênico/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular Tumoral , Humanos , Ligação Proteica , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Ressonância de Plasmônio de Superfície , Tamoxifeno/farmacologia
11.
J Med Chem ; 57(15): 6342-53, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24978112

RESUMO

The aberrant activation of STAT3 occurs in many human cancers and promotes tumor progression. Phosphorylation of a tyrosine at amino acid Y705 is essential for the function of STAT3. Synthesized carbazole derived with fluorophore compound 12 was discovered to target STAT3 phosphorylation. Compound 12 was found to inhibit STAT3-mediated transcription as well as to reduce IL-6 induced STAT3 phosphorylation in cancer cell lines expressing both elevated and low levels of phospho-STAT3 (Y705). Compound 12 potently induced apoptosis in a broad number of TNBC cancer cell lines in vitro and was effective at inhibiting the in vivo growth of human TNBC xenograft tumors (SUM149) without any observed toxicity. Compound 12 also effectively inhibited the growth of human lung tumor xenografts (A549) harboring aberrantly active STAT3. In vitro and in vivo studies showed that the inhibitory effects of 12 on phospho-STAT3 were through up-regulation of the protein-tyrosine phosphatase PTPN6. Our present studies strongly support the continued preclinical evaluation of compound 12 as a potential chemotherapeutic agent for TNBC and cancers with constitutive STAT3 signaling.


Assuntos
Antineoplásicos/química , Carbazóis/química , Naftalenossulfonatos/química , Proteína Tirosina Fosfatase não Receptora Tipo 6/biossíntese , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Carbazóis/síntese química , Carbazóis/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Indução Enzimática , Feminino , Xenoenxertos , Humanos , Interleucina-6/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Naftalenossulfonatos/síntese química , Naftalenossulfonatos/farmacologia , Transplante de Neoplasias , Fosforilação , Relação Estrutura-Atividade , Transcrição Gênica
12.
Oncotarget ; 5(6): 1458-74, 2014 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-24681547

RESUMO

Cadherin-11 (CDH11), associated with epithelial to mesenchymal transformation in development, poor prognosis malignancies and cancer stem cells, is also a major therapeutic target in rheumatoid arthritis (RA). CDH11 expressing basal-like breast carcinomas and other CDH11 expressing malignancies exhibit poor prognosis. We show that CDH11 is increased early in breast cancer and ductal carcinoma in-situ. CDH11 knockdown and antibodies effective in RA slowed the growth of basal-like breast tumors and decreased proliferation and colony formation of breast, glioblastoma and prostate cancer cells. The repurposed arthritis drug celecoxib, which binds to CDH11, and other small molecules designed to bind CDH11 without inhibiting COX-2 preferentially affect the growth of CDH11 positive cancer cells in vitro and in animals. These data suggest that CDH11 is important for malignant progression, and is a therapeutic target in arthritis and cancer with the potential for rapid clinical translation.


Assuntos
Artrite Reumatoide/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Caderinas/metabolismo , Carcinoma Ductal de Mama/metabolismo , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Animais , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Western Blotting , Neoplasias da Mama/patologia , Caderinas/antagonistas & inibidores , Caderinas/genética , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Carcinoma Ductal de Mama/tratamento farmacológico , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/tratamento farmacológico , Carcinoma Intraductal não Infiltrante/metabolismo , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Lobular/tratamento farmacológico , Carcinoma Lobular/metabolismo , Carcinoma Lobular/patologia , Celecoxib , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase 2/farmacologia , Feminino , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Camundongos , Camundongos Nus , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ressonância de Plasmônio de Superfície , Células Tumorais Cultivadas , Ensaio Tumoral de Célula-Tronco , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Bioorg Med Chem ; 22(1): 478-87, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24326277

RESUMO

Respiratory failure due to pulmonary metastasis is the major cause of death for patients with osteosarcoma. However, the molecular basis for metastasis of osteosarcoma is poorly understood. Recently, ezrin, a member of the ERM family of proteins, has been associated with osteosarcoma metastasis to the lungs. The small molecule NSC 668394 was identified to bind to ezrin, inhibit in vitro and in vivo cell migration, invasion, and metastatic colony survival. Reported herein are the design and synthesis of analogues of NSC 668394, and subsequent functional ezrin inhibition studies. The binding affinity was characterized by surface plasmon resonance technique. Cell migration and invasion activity was determined by electrical cell impedance methodology. Optimization of a series of heterocyclic-dione analogues led to the discovery of compounds 21k and 21m as potential novel antimetastatic agents.


Assuntos
Antineoplásicos/síntese química , Proteínas do Citoesqueleto/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proteínas do Citoesqueleto/antagonistas & inibidores , Desenho de Fármacos , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia
14.
Proc Natl Acad Sci U S A ; 110(46): 18650-5, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24127581

RESUMO

DIM (3,3'-diindolylmethane), a small molecule compound, is a proposed cancer preventive agent that can be safely administered to humans in repeated doses. We report that administration of DIM in a multidose schedule protected rodents against lethal doses of total body irradiation up to 13 Gy, whether DIM dosing was initiated before or up to 24 h after radiation. Physiologic submicromolar concentrations of DIM protected cultured cells against radiation by a unique mechanism: DIM caused rapid activation of ataxia-telangiectasia mutated (ATM), a nuclear kinase that regulates responses to DNA damage (DDR) and oxidative stress. Subsequently, multiple ATM substrates were phosphorylated, suggesting that DIM induces an ATM-dependent DDR-like response, and DIM enhanced radiation-induced ATM signaling and NF-κB activation. DIM also caused activation of ATM in rodent tissues. Activation of ATM by DIM may be due, in part, to inhibition of protein phosphatase 2A, an upstream regulator of ATM. In contrast, DIM did not protect human breast cancer xenograft tumors against radiation under the conditions tested. In tumors, ATM was constitutively phosphorylated and was not further stimulated by radiation and/or DIM. Our findings suggest that DIM is a potent radioprotector and mitigator that functions by stimulating an ATM-driven DDR-like response and NF-κB survival signaling.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ativação Enzimática/efeitos dos fármacos , Indóis/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular , Ensaio Cometa , Feminino , Proteínas de Fluorescência Verde , Imunoprecipitação , Indóis/uso terapêutico , Estimativa de Kaplan-Meier , Luciferases , Camundongos , Fosforilação/efeitos dos fármacos , Proteína Fosfatase 2/metabolismo , RNA Interferente Pequeno/genética , Lesões Experimentais por Radiação/tratamento farmacológico , Radiação Ionizante , Ratos , Ratos Sprague-Dawley
15.
Oncotarget ; 4(7): 984-94, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23846322

RESUMO

Many types of mutations in tumor suppressor p53 are oncogenic through gain-of-function. Therefore, targeting mutant p53 (mtp53) is a promising therapeutic approach to fight against many types of cancers. We report here a small molecule compound YK-3-237 that reduces acetylation of mtp53 and exhibits anti-proliferative effects toward triple-negative breast cancer (TNBC) cells carrying mtp53. YK-3-237 activates SIRT1 enzyme activities in vitro and deacetylation of both mtp53 in a SIRT1-dependent manner. Deacetylation of mtp53 resulted in depletion of mtp53 protein level and up-regulated the expression of WTp53-target genes, PUMA and NOXA. YK-3-237 also induces PARP-dependent apoptotic cell death and arrests the cell cycle at G2/M phase of mtp53 TNBC cells. Taken together, our data suggest that targeting acetylation of mtp53 is a potential target to treat human cancers.


Assuntos
Ácidos Borônicos/farmacologia , Chalconas/farmacologia , Sirtuína 1/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo , Acetilação/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sirtuína 1/genética , Transfecção , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/genética
16.
J Med Chem ; 56(7): 3000-11, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23540678

RESUMO

Neuronal acetylcholine receptors mediate the addictive effects of nicotine and may also be involved in alcohol addiction. Varenicline, an approved smoking cessation medication, showed clear efficacy in reducing alcohol consumption in heavy-drinking smokers. More recently, sazetidine-A, which selectively desensitizes α4ß2 nicotinic receptors, was shown to significantly reduce alcohol intake in a rat model. To develop novel therapeutics for treating alcohol use disorder, we designed and synthesized novel sazetidine-A analogues containing a methyl group at the 2-position of the pyridine ring. In vitro pharmacological studies revealed that some of the novel compounds showed overall pharmacological property profiles similar to that of sazetidine-A but exhibited reduced agonist activity across all nicotinic receptor subtypes tested. In rat studies, compound (S)-9 significantly reduced alcohol uptake. More importantly, preliminary results from studies in a ferret model indicate that these novel nAChR ligands have an improved adverse side-effect profile in comparison with that of varenicline.


Assuntos
Consumo de Bebidas Alcoólicas/prevenção & controle , Etanol/administração & dosagem , Piridinas/química , Piridinas/farmacologia , Receptores Nicotínicos/efeitos dos fármacos , Animais , Furões , Ligantes , Espectroscopia de Ressonância Magnética , Ratos , Espectrometria de Massas por Ionização por Electrospray
17.
Proc Natl Acad Sci U S A ; 110(4): 1267-72, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23288901

RESUMO

Activation of STAT3 in cancers leads to gene expression promoting cell proliferation and resistance to apoptosis, as well as tumor angiogenesis, invasion, and migration. In the characterization of effects of ST3-H2A2, a selective inhibitor of the STAT3 N-terminal domain (ND), we observed that the compound induced apoptotic death in cancer cells associated with robust activation of proapoptotic genes. Using ChIP and tiling human promoter arrays, we found that activation of gene expression in response to ST3-H2A2 is accompanied by altered STAT3 chromatin binding. Using inhibitors of STAT3 phosphorylation and a dominant-negative STAT3 mutant, we found that the unphosphorylated form of STAT3 binds to regulatory regions of proapoptotic genes and prevents their expression in tumor cells but not normal cells. siRNA knockdown confirmed the effects of ST3-HA2A on gene expression and chromatin binding to be STAT3 dependent. The STAT3-binding region of the C/EBP-homologous protein (CHOP) promoter was found to be localized in DNaseI hypersensitive site of chromatin in cancer cells but not in nontransformed cells, suggesting that STAT3 binding and suppressive action can be chromatin structure dependent. These data demonstrate a suppressive role for the STAT3 ND in the regulation of proapoptotic gene expression in cancer cells, providing further support for targeting STAT3 ND for cancer therapy.


Assuntos
Apoptose/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatina/metabolismo , Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Fosforilação , Regiões Promotoras Genéticas , Neoplasias da Próstata/patologia , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética
18.
J Med Chem ; 55(15): 6832-48, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22780961

RESUMO

The most effective way to move from target identification to the clinic is to identify already approved drugs with the potential for activating or inhibiting unintended targets (repurposing or repositioning). This is usually achieved by high throughput chemical screening, transcriptome matching, or simple in silico ligand docking. We now describe a novel rapid computational proteochemometric method called "train, match, fit, streamline" (TMFS) to map new drug-target interaction space and predict new uses. The TMFS method combines shape, topology, and chemical signatures, including docking score and functional contact points of the ligand, to predict potential drug-target interactions with remarkable accuracy. Using the TMFS method, we performed extensive molecular fit computations on 3671 FDA approved drugs across 2335 human protein crystal structures. The TMFS method predicts drug-target associations with 91% accuracy for the majority of drugs. Over 58% of the known best ligands for each target were correctly predicted as top ranked, followed by 66%, 76%, 84%, and 91% for agents ranked in the top 10, 20, 30, and 40, respectively, out of all 3671 drugs. Drugs ranked in the top 1-40 that have not been experimentally validated for a particular target now become candidates for repositioning. Furthermore, we used the TMFS method to discover that mebendazole, an antiparasitic with recently discovered and unexpected anticancer properties, has the structural potential to inhibit VEGFR2. We confirmed experimentally that mebendazole inhibits VEGFR2 kinase activity and angiogenesis at doses comparable with its known effects on hookworm. TMFS also predicted, and was confirmed with surface plasmon resonance, that dimethyl celecoxib and the anti-inflammatory agent celecoxib can bind cadherin-11, an adhesion molecule important in rheumatoid arthritis and poor prognosis malignancies for which no targeted therapies exist. We anticipate that expanding our TMFS method to the >27 000 clinically active agents available worldwide across all targets will be most useful in the repositioning of existing drugs for new therapeutic targets.


Assuntos
Bases de Dados Factuais , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos , Preparações Farmacêuticas/química , Proteínas/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antirreumáticos/química , Antirreumáticos/farmacologia , Caderinas/metabolismo , Celecoxib , Linhagem Celular Tumoral , Cristalografia por Raios X , Drogas em Investigação/química , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Mebendazol/química , Mebendazol/farmacologia , Camundongos , Modelos Moleculares , Neovascularização Patológica , Ligação Proteica , Conformação Proteica , Pirazóis/metabolismo , Sulfonamidas/metabolismo , Estados Unidos , United States Food and Drug Administration , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
19.
Pharm Res ; 29(12): 3373-83, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22836184

RESUMO

PURPOSE: The HDAC shuttling inhibitor, YK-4-272 functions by restricting nuclear shuttling of Class II HDACs. Pre-clinical investigations of YK-4-272 bioavailability, pharmacokinetics, in vivo toxicity and tumor growth inhibition were performed to determine its potential as an HDAC shuttling disruptor for use in clinical applications. METHODS: The solubility, lipophilicity, in vitro metabolic stability, in vitro intestinal permeability, and in vivo pharmacokinetics of YK-4-272 were determined by HPLC methods. The anti-tumor activity of YK-4-272 was determined by monitoring athymic Balb/c nude mice bearing PC-3 xenografts. RESULTS: Oral bioavailability of YK-4-272 is supported by its solubility (0.537 mg/mL) and apparent partition coefficient of 2.0. The compound was chemically and metabolically stable and not a substrate for CYP450. In Caco-2 cell transport studies, YK-4-272 was highly permeable. The time-concentration profile of YK-4-272 in plasma resulted in a C ( max ) of 2.47 µg/mL at 0.25 h with a AUC of 3.304 µg × h/mL. Treatment of PC-3 tumor xenografts with YK-4-272 showed significant growth delay. CONCLUSIONS: YK-4-272 is stable and bio-available following oral administration. Growth inhibition of cancer cells and tumors was observed. These studies support advancing YK-4-272 for further evaluation as a novel HDAC shuttling inhibitor for use in cancer treatment.


Assuntos
Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Inibidores de Histona Desacetilases/farmacocinética , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Células CACO-2 , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/patologia , Ratos , Ratos Sprague-Dawley , Solubilidade , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancer Biol Ther ; 13(10): 925-34, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22785207

RESUMO

Resveratrol (RSV), a natural compound present in the skin and seeds of red grapes, is considered a phytoestrogen and has structural similarity to the synthetic estrogen diethylstilbestrol. RSV inhibits tumor cell growth in estrogen receptor-positive (ER+) and negative (ER-) breast cancer cell lines resulting in cell specific regulation of the G1/S and G2/M stages of the cell cycle. However apoptotic cell death was only observed in ER+ MCF-7 cells. In this study, we designed and synthesized boronic acid derivative of RSV and evaluated their biological effects on ER+ MCF-7 breast cancer cells. The trans-4 analog inhibited the growth of MCF-7 cells and is not a substrate for p-glycoprotein. The trans-4 analog induces G1 cell cycle arrest, which coincides with marked inhibition of G1 cell cycle proteins and a greater pro-apoptotic effect. Finally, the trans-4 analog had no effect on the estrogen-stimulated growth of MCF-7 cells. Our results demonstrate that the trans-4 analog inhibits MCF-7 breast cancer cells by a different mechanism of action than that of RSV (S-phase arrest), and provides a new class of novel boronic acids of RSV that inhibit breast cancer cell growth.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ácidos Borônicos/farmacologia , Neoplasias da Mama/metabolismo , Estrogênios/metabolismo , Estilbenos/farmacologia , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Ácidos Borônicos/química , Neoplasias da Mama/genética , Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Estrogênios/farmacologia , Feminino , Humanos , Células MCF-7 , Estilbenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA