Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 31(5): 540-556, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33295603

RESUMO

Mucin-type O-glycosylation occurs on many proteins that transit the Golgi apparatus. These glycans impact structure and function of many proteins and have important roles in cellular biosynthetic processes, signaling and differentiation. Although recent technological advances have enhanced our ability to profile glycosylation of glycoproteins, limitations in the understanding of the biosynthesis of these glycan structures remain. Some of these limitations stem from the difficulty to track the biosynthetic process of mucin-type O-glycosylation, especially when glycans occur in dense clusters in repeat regions of proteins, such as the mucins or immunoglobulin A1 (IgA1). Here, we describe a series of nano-liquid chromatography (LC)-mass spectrometry (MS) analyses that demonstrate the range of glycosyltransferase enzymatic activities involved in the biosynthesis of clustered O-glycans on IgA1. By utilizing nano-LC-MS relative quantitation of in vitro reaction products, our results provide unique insights into the biosynthesis of clustered IgA1 O-glycans. We have developed a workflow to determine glycoform-specific apparent rates of a human UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltrasnfersase (GalNAc-T EC 2.4.1.41) and demonstrated how pre-existing glycans affect subsequent activity of glycosyltransferases, such as core 1 galactosyltransferase and α2,3- and α2,6-specific sialyltransferases, in successive additions in the biosynthesis of clustered O-glycans. In the context of IgA1, these results have potential to provide insight into the molecular mechanisms implicated in the pathogenesis of IgA nephropathy, an autoimmune renal disease involving aberrant IgA1 O-glycosylation. In a broader sense, these methods and workflows are applicable to the studies of the concerted and competing functions of other glycosyltransferases that initiate and extend mucin-type core 1 clustered O-glycosylation.


Assuntos
Glicosiltransferases/metabolismo , Imunoglobulina A/metabolismo , Polissacarídeos/biossíntese , Glicosilação , Humanos , Polissacarídeos/análise
2.
J Am Soc Nephrol ; 30(10): 2017-2026, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31444275

RESUMO

BACKGROUND: IgA nephropathy (IgAN) is the leading primary GN worldwide. The disease is thought to result from glomerular deposition of circulating immune complexes of IgG bound to galactose-deficient IgA1 (Gd-IgA1). However, routine immunofluorescence microscopy fails to detect IgG in many kidney biopsies from patients with IgAN and the specificity of IgG in immunodeposits has not been tested. METHODS: We used remnant frozen kidney-biopsy specimens from 34 patients with IgAN; 14 were IgG-positive and 20 were IgG-negative by routine immunofluorescence microscopy. Six patients with primary membranous nephropathy (MN) and eight with lupus nephritis (LN) served as controls. IgG in the kidney tissue was extracted and its amount determined by ELISA. IgG molecular integrity was assessed by SDS-PAGE immunoblotting. Antigenic specificity of extracted IgG was determined by ELISA using phospholipase A2 receptor (PLA2R) or Gd-IgA1 as antigen. In addition, ten other IgAN cases, six IgG-positive and four IgG-negative by routine immunofluorescence, were used for colocalization studies by confocal microscopy. RESULTS: IgG extracted from MN but not IgAN immunodeposits reacted with PLA2R. Conversely, IgG extracted from IgAN but not MN or LN immunodeposits reacted with Gd-IgA1. Even IgAN kidney-biopsy specimens without IgG by routine immunofluorescence microscopy had IgG specific for Gd-IgA1. Confocal microscopy confirmed the presence of IgG in the IgAN biopsies with colocalization of glomerular IgA and IgG. CONCLUSIONS: These results reveal for the first time that IgAN kidney biopsies, with or without IgG by routine immunofluorescence, contain Gd-IgA1-specific IgG autoantibodies. These findings support the importance of these autoantibodies in the pathogenesis of IgAN.


Assuntos
Autoanticorpos/imunologia , Glomerulonefrite por IGA/imunologia , Imunoglobulina A/imunologia , Glomérulos Renais/imunologia , Adulto , Idoso , Especificidade de Anticorpos , Feminino , Galactose/deficiência , Humanos , Imunoglobulina A/metabolismo , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
PLoS One ; 14(2): e0212254, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794576

RESUMO

BACKGROUND: IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, has serious outcomes with end-stage renal disease developing in 30-50% of patients. The diagnosis requires renal biopsy. Due to its inherent risks, non-invasive approaches are needed. METHODS: We evaluated 91 Czech patients with biopsy-proven IgAN who were assessed at time of diagnosis for estimated glomerular filtration rate (eGFR), proteinuria, microscopic hematuria, and hypertension, and then followed prospectively. Serum samples collected at diagnosis were analyzed for galactose-deficient IgA1 (Gd-IgA1) using new native-IgA1 and established neuraminidase-treated-IgA1 tests, Gd-IgA1-specific IgG autoantibodies, discriminant analysis and logistic regression model assessed correlations with renal function and Oxford classification (MEST score). RESULTS: Serum levels of native (P <0.005) and neuraminidase-treated (P <0.005) Gd-IgA1 were associated with the rate of eGFR decline. A higher relative degree of galactose deficiency in native serum IgA1 predicted a faster eGFR decline and poor renal survival (P <0.005). However, Gd-IgA1 has not differentiated patients with low vs. high baseline eGFR. Furthermore, patients with high baseline eGFR that was maintained during follow-up were characterized by low serum levels of Gd-IgA1-specific IgG autoantibodies (P = 0.003). CONCLUSIONS: Including levels of native and neuraminidase-treated Gd-IgA1 and Gd-IgA1-specific autoantibodies at diagnosis may aid in the prognostication of disease progression in Czech patients with IgAN. Future tests will assess utility of these biomarkers in larger patients cohorts from geographically distinct areas.


Assuntos
Autoanticorpos/sangue , Galactose/sangue , Glomerulonefrite por IGA/sangue , Imunoglobulina A/sangue , Adulto , Autoanticorpos/imunologia , Biomarcadores/sangue , Progressão da Doença , Feminino , Seguimentos , Galactose/imunologia , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite por IGA/imunologia , Glomerulonefrite por IGA/mortalidade , Humanos , Imunoglobulina A/imunologia , Masculino , Estudos Prospectivos
4.
J Am Soc Nephrol ; 28(4): 1306-1313, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27821627

RESUMO

IgA nephropathy frequently leads to progressive CKD. Although interest surrounds use of immunosuppressive agents added to standard therapy, several recent studies have questioned efficacy of these agents. Depleting antibody-producing B cells potentially offers a new therapy. In this open label, multicenter study conducted over 1-year follow-up, we randomized 34 adult patients with biopsy-proven IgA nephropathy and proteinuria >1 g/d, maintained on angiotensin-converting enzyme inhibitors or angiotensin receptor blockers with well controlled BP and eGFR<90 ml/min per 1.73 m2, to receive standard therapy or rituximab with standard therapy. Primary outcome measures included change in proteinuria and change in eGFR. Median baseline serum creatinine level (range) was 1.4 (0.8-2.4) mg/dl, and proteinuria was 2.1 (0.6-5.3) g/d. Treatment with rituximab depleted B cells and was well tolerated. eGFR did not change in either group. Rituximab did not alter the level of proteinuria compared with that at baseline or in the control group; three patients in each group had ≥50% reduction in level of proteinuria. Serum levels of galactose-deficient IgA1 or antibodies against galactose-deficient IgA1 did not change. In this trial, rituximab therapy did not significantly improve renal function or proteinuria assessed over 1 year. Although rituximab effectively depleted B cells, it failed to reduce serum levels of galactose-deficient IgA1 and antigalactose-deficient IgA1 antibodies. Lack of efficacy of rituximab, at least at this stage and severity of IgA nephropathy, may reflect a failure of rituximab to reduce levels of specific antibodies assigned salient pathogenetic roles in IgA nephropathy.


Assuntos
Glomerulonefrite por IGA/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Rituximab/uso terapêutico , Adulto , Feminino , Glomerulonefrite por IGA/complicações , Glomerulonefrite por IGA/imunologia , Glomerulonefrite por IGA/fisiopatologia , Humanos , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Proteinúria/etiologia , Adulto Jovem
5.
AIDS Res Ther ; 11: 23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25120578

RESUMO

BACKGROUND: HIV-1 entry into host cells is mediated by interactions between the virus envelope glycoprotein (gp120/gp41) and host-cell receptors. N-glycans represent approximately 50% of the molecular mass of gp120 and serve as potential antigenic determinants and/or as a shield against immune recognition. We previously reported that N-glycosylation of recombinant gp120 varied, depending on the producer cells, and the glycosylation variability affected gp120 recognition by serum antibodies from persons infected with HIV-1 subtype B. However, the impact of gp120 differential glycosylation on recognition by broadly neutralizing monoclonal antibodies or by polyclonal antibodies of individuals infected with other HIV-1 subtypes is unknown. METHODS: Recombinant multimerizing gp120 antigens were expressed in different cells, HEK 293T, T-cell, rhabdomyosarcoma, hepatocellular carcinoma, and Chinese hamster ovary cell lines. Binding of broadly neutralizing monoclonal antibodies and polyclonal antibodies from sera of subtype A/C HIV-1-infected subjects with individual gp120 glycoforms was assessed by ELISA. In addition, immunodetection was performed using Western and dot blot assays. Recombinant gp120 glycoforms were tested for inhibition of infection of reporter cells by SF162 and YU.2 Env-pseudotyped R5 viruses. RESULTS: We demonstrated, using ELISA, that gp120 glycans sterically adjacent to the V3 loop only moderately contribute to differential recognition of a short apex motif GPGRA and GPGR by monoclonal antibodies F425 B4e8 and 447-52D, respectively. The binding of antibodies recognizing longer peptide motifs overlapping with GPGR epitope (268 D4, 257 D4, 19b) was significantly altered. Recognition of gp120 glycoforms by monoclonal antibodies specific for other than V3-loop epitopes was significantly affected by cell types used for gp120 expression. These epitopes included CD4-binding site (VRC03, VRC01, b12), discontinuous epitope involving V1/V2 loop with the associated glycans (PG9, PG16), and an epitope including V3-base-, N332 oligomannose-, and surrounding glycans-containing epitope (PGT 121). Moreover, the different gp120 glycoforms variably inhibited HIV-1 infection of reporter cells. CONCLUSION: Our data support the hypothesis that the glycosylation machinery of different cells shapes gp120 glycosylation and, consequently, impacts envelope recognition by specific antibodies as well as the interaction of HIV-1 gp120 with cellular receptors. These findings underscore the importance of selection of appropriately glycosylated HIV-1 envelope as a vaccine antigen.

6.
Results Immunol ; 2: 166-172, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24052934

RESUMO

IgA nephropathy (IgAN) patients have elevated serum levels of immune complexes consisting of IgA1 with galactose-deficient hinge-region O-glycans (Gd-IgA1) and anti-glycan IgG. These immune complexes deposit in the kidney and activate mesangial cells. To confirm that the activity of these immune complexes depends on the interaction of Gd-IgA1 with anti-glycan IgG, we generated in vitro analogous immune complexes using Gd-IgA1 myeloma protein and anti-glycan IgG from cord blood of healthy women. The Gd-IgA1 and anti-glycan IgG from cord-blood serum formed IgA1-IgG immune complexes that resembled those in sera of patients with IgAN. Furthermore, the ability to activate cellular proliferation was dependent on a heat-sensitive serum factor. In summary, we developed a new protocol for in-vitro formation of IgA1-IgG immune complexes, thus providing a new tool for studies of the pathogenesis of IgAN.

7.
Nephrol Dial Transplant ; 26(11): 3451-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21828345

RESUMO

BACKGROUND: Circulating immune complexes (CIC) containing galactose (Gal)-deficient IgA1 from adults with IgA nephropathy (IgAN) induce proliferation of cultured mesangial cells, but activities of CIC from pediatric patients with the disease have not been studied. METHODS: CIC of different sizes were isolated from sera of pediatric and adult IgAN patients and their effects on cultured human mesangial cells (MC) were assessed by measuring cellular proliferation, expression of IL-6 and IL-8 and laminin and phosphotyrosine signaling. RESULTS: Large CIC from pediatric IgAN patients (>800 kDa) containing Gal-deficient IgA1 stimulated cellular proliferation, whereas in some patients, smaller CIC were inhibitory. Addition of stimulatory and inhibitory CIC to MC differentially altered phosphorylation patterns of three major tyrosine-phosphorylated proteins of molecular mass 37, 60 and 115 kDa. The stimulatory CIC transiently increased tyrosine-phosphorylation of the 37-kDa protein and decreased phosphorylation of the other two proteins, whereas the inhibitory CIC increased phosphorylation of all three proteins. Furthermore, we investigated the influence of IgA1-containing CIC from sera of children with IgAN with clinically active disease (i.e., abnormal urinalysis and/or serum creatinine concentration) or inactive disease (i.e., normal urinalysis and serum creatinine concentration) on the expression of IL-6 and IL-8 genes by mesangial cells. Real-time reverse transcription-polymerase chain reaction results showed that the CIC from a patient with active disease stimulated MC to express the two cytokine genes at higher levels than did the CIC from a patient with inactive disease. Moreover, stimulatory CIC increased production of the extracellular matrix protein laminin. CONCLUSION: These data indicate that sera of pediatric IgAN patients contain biologically active CIC with Gal-deficient IgA1.


Assuntos
Complexo Antígeno-Anticorpo/farmacologia , Proliferação de Células , Mesângio Glomerular/citologia , Glomerulonefrite por IGA/fisiopatologia , Imunoglobulina A/metabolismo , Células Mesangiais/efeitos dos fármacos , Adolescente , Adulto , Complexo Antígeno-Anticorpo/sangue , Western Blotting , Células Cultivadas , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Galactose/deficiência , Taxa de Filtração Glomerular , Mesângio Glomerular/imunologia , Mesângio Glomerular/metabolismo , Glomerulonefrite por IGA/etiologia , Glicosilação , Humanos , Técnicas Imunoenzimáticas , Imunoglobulina A/imunologia , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Células Mesangiais/citologia , Células Mesangiais/imunologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
8.
J Biol Chem ; 285(27): 20860-9, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20439465

RESUMO

Human immunodeficiency virus type 1 (HIV-1) entry is mediated by the interaction between a variably glycosylated envelope glycoprotein (gp120) and host-cell receptors. Approximately half of the molecular mass of gp120 is contributed by N-glycans, which serve as potential epitopes and may shield gp120 from immune recognition. The role of gp120 glycans in the host immune response to HIV-1 has not been comprehensively studied at the molecular level. We developed a new approach to characterize cell-specific gp120 glycosylation, the regulation of glycosylation, and the effect of variable glycosylation on antibody reactivity. A model oligomeric gp120 was expressed in different cell types, including cell lines that represent host-infected cells or cells used to produce gp120 for vaccination purposes. N-Glycosylation of gp120 varied, depending on the cell type used for its expression and the metabolic manipulation during expression. The resultant glycosylation included changes in the ratio of high-mannose to complex N-glycans, terminal decoration, and branching. Differential glycosylation of gp120 affected envelope recognition by polyclonal antibodies from the sera of HIV-1-infected subjects. These results indicate that gp120 glycans contribute to antibody reactivity and should be considered in HIV-1 vaccine design.


Assuntos
Anticorpos/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Proteína gp120 do Envelope de HIV/metabolismo , Síndrome da Imunodeficiência Adquirida/imunologia , Especificidade de Anticorpos , Linhagem Celular , Linhagem Celular Tumoral , DNA Complementar/genética , Ensaio de Imunoadsorção Enzimática/métodos , Glicosídeo Hidrolases/metabolismo , Glicosilação , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/isolamento & purificação , Soropositividade para HIV/imunologia , Soropositividade para HIV/metabolismo , HIV-1/imunologia , HIV-1/metabolismo , Células Hep G2/metabolismo , Humanos , Células Jurkat/metabolismo , Manose/metabolismo , Lectina de Ligação a Manose/genética , Espectrometria de Massas , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Plasmídeos , Polissacarídeos/química , Polissacarídeos/isolamento & purificação
9.
J Clin Invest ; 118(2): 629-39, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18172551

RESUMO

Aberrant glycosylation of IgA1 plays an essential role in the pathogenesis of IgA nephropathy. This abnormality is manifested by a deficiency of galactose in the hinge-region O-linked glycans of IgA1. Biosynthesis of these glycans occurs in a stepwise fashion beginning with the addition of N-acetylgalactosamine by the enzyme N-acetylgalactosaminyltransferase 2 and continuing with the addition of either galactose by beta1,3-galactosyltransferase or a terminal sialic acid by a N-acetylgalactosamine-specific alpha2,6-sialyltransferase. To identify the molecular basis for the aberrant IgA glycosylation, we established EBV-immortalized IgA1-producing cells from peripheral blood cells of patients with IgA nephropathy. The secreted IgA1 was mostly polymeric and had galactose-deficient O-linked glycans, characterized by a terminal or sialylated N-acetylgalactosamine. As controls, we showed that EBV-immortalized cells from patients with lupus nephritis and healthy individuals did not produce IgA with the defective galactosylation pattern. Analysis of the biosynthetic pathways in cloned EBV-immortalized cells from patients with IgA nephropathy indicated a decrease in beta1,3-galactosyltransferase activity and an increase in N-acetylgalactosamine-specific alpha2,6-sialyltransferase activity. Also, expression of beta1,3-galactosyltransferase was significantly lower, and that of N-acetylgalactosamine-specific alpha2,6-sialyltransferase was significantly higher than the expression of these genes in the control cells. Thus, our data suggest that premature sialylation likely contributes to the aberrant IgA1 glycosylation in IgA nephropathy and may represent a new therapeutic target.


Assuntos
Glomerulonefrite por IGA/imunologia , Imunoglobulina A/metabolismo , Leucócitos Mononucleares/imunologia , Adulto , Linhagem Celular Transformada , Feminino , Galactosiltransferases/antagonistas & inibidores , Galactosiltransferases/metabolismo , Glucosiltransferases , Glicosilação , Complexo de Golgi/imunologia , Herpesvirus Humano 4 , Humanos , Imunoglobulina A/análise , Nefrite Lúpica/imunologia , Masculino , Pessoa de Meia-Idade , Ácido N-Acetilneuramínico/metabolismo , Sialiltransferases/metabolismo
10.
Contrib Nephrol ; 157: 129-33, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17495450

RESUMO

The circulating immune complexes in IgA nephropathy (IgAN) are composed of galactose (Gal)-deficient IgA1 bound to IgG or IgA1 antibodies specific for hinge-region O-linked glycans of Gal-deficient IgA1. To analyze properties of the anti-glycan antibodies, we determined the binding of serum IgG and IgG secreted by Epstein-Barr virus (EBV)- immortalized B cells from patients with biopsy-proven IgAN (n = 12) and healthy controls (n = 5) to a panel of antigens coated on ELISA plates. These antigens were: (1) enzymatically desialylated and degalactosylated IgA1 myeloma protein (dd-IgA1), (2) Fab fragment of Gal-deficient IgA1 containing part of the hinge region with O-glycans (Fab-IgA1), (3) synthetic hinge-region peptide linked to bovine albumin (HR-BSA), and (4) synthetic hingeregion glycopeptide with three GalNAc residues linked to BSA (HR-GalNAc-BSA). IgG-secreting EBV-immortalized cell lines were subcloned by limiting dilution. The concentration of total IgG and distribution of IgG subclasses were measured by ELISA. The levels of IgG in sera and supernatants directed against dd-IgA1 and Fab-IgA1 were significantly higher in IgAN patients than in controls (p < 0.01). IgG from IgAN patients exhibited strong reactivity with HR-GalNAc-BSA, but not with HR-BSA. The IgG-secreting cell lines produced antibodies specific to dd-IgA1; the antigen-specific IgG was most frequently of the IgG2 subclass. In summary, sera and supernatants from IgG-secreting cell lines from patients with IgAN were characterized by high levels of IgG antibodies with specificity to the Gal-deficient O-linked glycans of IgA1. The immortalized cell lines will provide a stable and convenient source of IgG for molecular studies of antibodies specific to the aberrant O-glycans in IgA1.


Assuntos
Galactose/imunologia , Glomerulonefrite por IGA/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Especificidade de Anticorpos , Linhagem Celular Transformada , Humanos
11.
Contrib Nephrol ; 157: 134-8, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17495451

RESUMO

IgA1 in the circulation and glomerular deposits of patients with IgA nephropathy (IgAN) is aberrantly glycosylated; the hinge-region O-linked glycans are galactose-deficient. The circulating IgA1 of patients with Henoch-Schoenlein purpura nephritis (HSPN) has a similar defect. This aberrancy exposes N-acetylgalactosamine-containing neoepitopes recognized by naturally occurring IgG or IgA1 antibodies resulting in formation of immune complexes. IgA1 contains up to six O-glycosylation sites per heavy chain; it is not known whether the glycosylation defect occurs randomly or preferentially at specific sites. We sought to define the aberrant glycosylation of a galactose-deficient IgA1 myeloma protein and analyze the formation of the immune complexes and their biological activities. Supplementation of serum or cord-blood serum with this IgA1 protein resulted in formation of new IgA1 complexes. These complexes stimulated proliferation of cultured human mesangial cells, as did the naturally-occurring IgA1-containing complexes from sera of patients with IgAN and HSPN. Uncomplexed IgA1 did not affect cellular proliferation. Using specific proteases, lectin Western blots, and mass spectrometry, we determined the O-glycosylation sites in the hinge region of the IgA1 myeloma protein and IgA1 proteins from sera of IgAN patients. The IgA1 myeloma protein had galactose-deficient sites at residues 228 and/or 230 and 232. These sites reacted with IgG specific to galactose-deficient IgA1. IgA1 from the IgAN patients had galactose-deficient O-glycans at the same residues. In summary, we identified the neoepitopes on IgA1 responsible for formation of the pathogenic immune complexes. These studies may lead to development of noninvasive diagnostic assays and future disease-specific therapy.


Assuntos
Complexo Antígeno-Anticorpo/imunologia , Glomerulonefrite por IGA/imunologia , Vasculite por IgA/imunologia , Imunoglobulina A/metabolismo , Nefrite/imunologia , Mesângio Glomerular/imunologia , Mesângio Glomerular/metabolismo , Glicosilação , Humanos , Vasculite por IgA/complicações , Imunoglobulina A/imunologia , Nefrite/etiologia
12.
J Mol Biol ; 369(1): 69-78, 2007 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-17418236

RESUMO

Glycosylation defects occur in several human diseases. In IgA nephropathy, IgA1 contains O-glycans that are galactose-deficient and consist mostly of core 1 alpha2,6 sialylated N-acetylgalactosamine, a configuration suspected to prevent beta1,3 galactosylation. We confirmed the same aberrancy in IgA1 secreted by the human DAKIKI B cell line. Biochemical assays indicated CMP-NeuAc:GalNAc-IgA1 alpha2,6-sialyltransferase activity in this cell line. However, a candidate enzyme, ST6-GalNAcI, was not transcribed in DAKIKI cells, B cells isolated from blood, or Epstein-Barr virus (EBV)-immortalized IgA1-producing cells from the blood of IgAN patients and healthy controls. Instead, ST6-GalNAcII transcription was detected at a high level. Expression of the ST6-GalNAcII gene and activity of the CMP-NeuAc:GalNAc-IgA1 alpha2,6-sialyltransferase were higher in IgA1-producing cell lines from IgAN patients than in such cells from healthy controls. These data are the first evidence that human cells that lack ST6-GalNAcI can sialylate core 1 GalNAc-Ser/Thr.


Assuntos
Imunoglobulina A/biossíntese , Sialiltransferases/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Ensaio de Imunoadsorção Enzimática , Regulação Enzimológica da Expressão Gênica , Glicosilação , Células HT29 , Herpesvirus Humano 4/metabolismo , Humanos , Lectinas/metabolismo , Leucócitos Mononucleares/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Reversa/genética , Sialiltransferases/genética , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
13.
Mol Immunol ; 44(10): 2598-604, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17275907

RESUMO

Lectins are proteins with specificity of binding to certain monosaccharides or oligosaccharides. They can detect abnormal glycosylation patterns on immunoglobulins in patients with various chronic inflammatory diseases, including rheumatoid arthritis and IgA nephropathy (IgAN). However, lectins exhibit binding heterogeneity, depending on their source and methods of isolation. To characterize potential differences in recognition of terminal N-acetylgalactosamine (GalNAc) on IgA1, we evaluated the binding characteristics of several commercial preparations of GalNAc-specific lectins using a panel of IgA1 and, as controls, IgA2 and IgG myeloma proteins. These lectins originated from snails Helix aspersa (HAA) and Helix pomatia (HPA), and the plant Vicia villosa (VV). Only HAA and HPA bound exclusively to IgA1, with its O-linked glycans composed of GalNAc, galactose, and sialic acid. In contrast, VV reacted with sugars of both IgA subclasses and IgG, indicating that it also recognized N-linked glycans without GalNAc. Furthermore, HAA and HPA from several manufacturers differed in their ability to bind various IgA1 myeloma proteins and other GalNAc-containing glycoproteins in ELISA and Western blot. For serum samples from IgAN patients, HAA was the optimal lectin to study IgA1 glycosylation in ELISA and Western blot assays, including identification of the sites of attachment of the aberrant glycans. The galactose-deficient glycans were site-specific, localized mostly at Thr228 and/or Ser230. Because of the heterogeneity of GalNAc-specific lectins, they should be carefully characterized with appropriate substrates before undertaking any study.


Assuntos
Acetilgalactosamina/análise , Glomerulonefrite por IGA/imunologia , Imunoglobulina A/química , Lectinas/metabolismo , Lectinas de Plantas/metabolismo , Sequência de Aminoácidos , Western Blotting , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina A/sangue , Imunoglobulina A/metabolismo , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA