Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 141: 418-428, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34999260

RESUMO

Sepsis is a dysregulated host response of severe bloodstream infections, and given its frequency of occurrence and high mortality rate, therapeutic improvements are imperative. A reliable biomimetic strategy for the targeting and separation of bacterial pathogens in bloodstream infections involves the use of the broad-spectrum binding motif of human GP-340, a pattern-recognition receptor of the scavenger receptor cysteine rich (SRCR) superfamily that is expressed on epithelial surfaces but not found in blood. Here we show that these peptides, when conjugated to superparamagnetic iron oxide nanoparticles (SPIONs), can separate various bacterial endotoxins and intact microbes (E. coli, S. aureus, P. aeruginosa and S. marcescens) with high efficiency, especially at low and thus clinically relevant concentrations. This is accompanied by a subsequent strong depletion in cytokine release (TNF, IL-6, IL-1ß, Il-10 and IFN-γ), which could have a direct therapeutic impact since escalating immune responses complicates severe bloodstream infections and sepsis courses. SPIONs are coated with aminoalkylsilane and capture peptides are orthogonally ligated to this surface. The particles behave fully cyto- and hemocompatible and do not interfere with host structures. Thus, this approach additionally aims to dramatically reduce diagnostic times for patients with suspected bloodstream infections and accelerate targeted antibiotic therapy. STATEMENT OF SIGNIFICANCE: Sepsis is often associated with excessive release of cytokines. This aspect and slow diagnostic procedures are the major therapeutic obstacles. The use of magnetic particles conjugated with small peptides derived from the binding motif of a broad-spectrum mucosal pathogen recognition protein GP-340 provides a highly efficient scavenging platform. These peptides are not found in blood and therefore are not subject to inhibitory mechanisms like in other concepts (mannose binding lectine, aptamers, antibodies). In this work, data are shown on the broad bacterial binding spectrum, highly efficient toxin depletion, which directly reduces the release of cytokines. Host cells are not affected and antibiotics not adsorbed. The particle bound microbes can be recultured without restriction and thus be used directly for diagnostics.


Assuntos
Sepse , Staphylococcus aureus , Antibacterianos/farmacologia , Bactérias/metabolismo , Citocinas/metabolismo , Escherichia coli/metabolismo , Humanos , Fenômenos Magnéticos , Peptídeos/uso terapêutico , Pseudomonas aeruginosa , Sepse/tratamento farmacológico , Staphylococcus aureus/metabolismo
2.
PLoS One ; 16(8): e0254606, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34428217

RESUMO

Acetylsalicylic acid is a globally used non-steroidal anti-inflammatory drug (NSAID) with diverse pharmacological properties, although its mechanism of immune regulation during inflammation (especially at in vivo relevant doses) remains largely speculative. Given the increase in clinical perspective of Acetylsalicylic acid in various diseases and cancer prevention, this study aimed to investigate the immunomodulatory role of physiological Acetylsalicylic acid concentrations (0.005, 0.02 and 0.2 mg/ml) in a human whole blood of infection-induced inflammation. We describe a simple, highly reliable whole blood assay using an array of toll-like receptor (TLR) ligands 1-9 in order to systematically explore the immunomodulatory activity of Acetylsalicylic acid plasma concentrations in physiologically relevant conditions. Release of inflammatory cytokines and production of prostaglandin E2 (PGE2) were determined directly in plasma supernatant. Experiments demonstrate for the first time that plasma concentrations of Acetylsalicylic acid significantly increased TLR ligand-triggered IL-1ß, IL-10, and IL-6 production in a dose-dependent manner. In contrast, indomethacin did not exhibit this capacity, whereas cyclooxygenase (COX)-2 selective NSAID, celecoxib, induced a similar pattern like Acetylsalicylic acid, suggesting a possible relevance of COX-2. Accordingly, we found that exogenous addition of COX downstream product, PGE2, attenuates the TLR ligand-mediated cytokine secretion by augmenting production of anti-inflammatory cytokines and inhibiting release of pro-inflammatory cytokines. Low PGE2 levels were at least involved in the enhanced IL-1ß production by Acetylsalicylic acid.


Assuntos
Aspirina/farmacologia , Citocinas/genética , Inflamação/tratamento farmacológico , Receptores Toll-Like/genética , Adjuvantes Imunológicos/farmacologia , Adolescente , Adulto , Anti-Inflamatórios não Esteroides/farmacologia , Celecoxib/farmacologia , Ciclo-Oxigenase 2/sangue , Ciclo-Oxigenase 2/genética , Citocinas/biossíntese , Dinoprostona/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Indometacina/farmacologia , Inflamação/sangue , Inflamação/patologia , Interleucina-10/genética , Interleucina-1beta/genética , Interleucina-6/genética , Leucócitos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Receptores Toll-Like/sangue , Adulto Jovem
3.
Transfusion ; 60(7): 1500-1507, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32170785

RESUMO

BACKGROUND: Traditionally, white blood cells (WBCs) are collected from buffy coats or freshly drawn blood. However, the increasing demand for peripheral blood mononuclear cells (PBMCs) in the research phases of immunological therapy development makes it necessary to identify alternative sources of these cells. STUDY DESIGN AND METHODS: Leukapheresis products are cost intensive and not offered by all blood banks. Therefore, thrombocyte apheresis cassettes (TACs), plateletpheresis waste products, were investigated as a possible low-cost and easily accessible blood source for research laboratories. The recovery rate, phenotype, and functionality of WBC subsets from TAC are unknown and were investigated in comparison to frequently used blood resources via flow cytometry. RESULTS: On average, TACs provide 30.3 × 106 /mL PBMCs, situating themselves between peripheral whole blood (WB; 5.35 × 106 /mL) and leukoreduction system chamber (LRSC; 163.9 × 106 /mL) yields. Frequencies of CD14, CD3, CD4, CD8, CD56, CD19, and CD11c positive cells in TACs correlate with normal proportions of WBC populations. Stimulation of TAC-derived PBMCs by lipopolysaccharide (LPS) and resiquimod (R848) showed no significant differences in expression levels of human leukocyte antigen (HLA)-DR, DQ, DP, and CD86 or cytokine secretion compared to other blood source derived PBMC. Following stimulation with LPS or R848, comparable levels of tumor necrosis factor-α, interleukin-10, and interleukin-1ß could be measured between TAC, LRSC, and WB. Additionally, TAC-derived T cells retained their proliferation capability and were able to produce interferon-γ following T-cell receptor stimulation. CONCLUSION: TACs provide a cost-effective source of viable and functional human blood cells that can readily be used for clinical and laboratory investigations after plateletpheresis preparation.


Assuntos
Plaquetas , Citometria de Fluxo , Procedimentos de Redução de Leucócitos , Leucócitos Mononucleares , Plaquetoferese , Plaquetas/citologia , Plaquetas/metabolismo , Citocinas/sangue , Feminino , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Masculino
4.
Cell Mol Life Sci ; 77(3): 531-542, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31236627

RESUMO

Human bitter taste receptors (TAS2Rs) are a subfamily of 25 G protein-coupled receptors that mediate bitter taste perception. TAS2R14 is the most broadly tuned bitter taste receptor, recognizing a range of chemically diverse agonists with micromolar-range potency. The receptor is expressed in several extra-oral tissues and is suggested to have physiological roles related to innate immune responses, male fertility, and cancer. Higher potency ligands are needed to investigate TAS2R14 function and to modulate it for future clinical applications. Here, a structure-based modeling approach is described for the design of TAS2R14 agonists beginning from flufenamic acid, an approved non-steroidal anti-inflammatory analgesic that activates TAS2R14 at sub-micromolar concentrations. Structure-based molecular modeling was integrated with experimental data to design new TAS2R14 agonists. Subsequent chemical synthesis and in vitro profiling resulted in new TAS2R14 agonists with improved potency compared to the lead. The integrated approach provides a validated and refined structural model of ligand-TAS2R14 interactions and a general framework for structure-based discovery in the absence of closely related experimental structures.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Percepção Gustatória/fisiologia , Paladar/fisiologia , Linhagem Celular , Fertilidade/fisiologia , Células HEK293 , Humanos , Imunidade Inata/fisiologia , Ligantes , Modelos Moleculares , Neoplasias/metabolismo
5.
Breast Cancer (Auckl) ; 13: 1178223419873628, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31619923

RESUMO

We are seeking to identify molecular targets that are relevant to breast cancer cells with stem-like properties. There is growing evidence that cancer stem cells (CSCs) are supported by inflammatory mediators expressed in the tumor microenvironment. The chemokine receptor CXCR3 binds the interferon-γ-inducible, ELR-negative CXC chemokines CXCL9, CXCL10, and CXCL11 and malignant cells have co-opted this receptor to promote tumor cell migration and invasion. There are 2 major isoforms of CXCR3: CXCR3A and CXCR3B. The latter is generated from alternative splicing and results in a protein with a longer N-terminal domain. CXCR3 isoform A is generally considered to play a major role in tumor metastasis. When the entire tumor cell population is examined, CXCR3 isoform B is usually detected at much lower levels than CXCR3A and for this, and other reasons, was not considered to drive tumor progression. We have shown that CXCR3B is significantly upregulated in the subpopulation of breast CSCs in comparison with the bulk tumor cell population in 3 independent breast cancer cell lines (MDA-MB-231, SUM159, and T47D). Modulation of CXCR3B levels by knock in strategies increases CSC populations identified by aldehyde dehydrogenase activity or CD44+CD24- phenotype as well as tumorsphere-forming capacity. The reverse is seen when CXCR3B is gene-silenced. CXCL11 and CXCL10 directly induce CSC. We also report that novel CXCR3 allosteric modulators BD064 and BD103 prevent the induction of CSCs. BD103 inhibited experimental metastasis. This protective effect is associated with the reversal of CXCR3 ligand-mediated activation of STAT3, ERK1/2, CREB, and NOTCH1 pathways. We propose that CXCR3B, expressed on CSC, should be explored further as a novel therapeutic target.

6.
Bioorg Med Chem ; 23(14): 4050-5, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25801155

RESUMO

The chemokine receptor CXCR4 belongs to the family of seven-transmembrane G-protein coupled receptors (GPCRs). It is activated by its natural ligand SDF-1α. In addition, CXCR4, along with CCR5, serve as coreceptors during HIV-1 entry into its target cell. Recently, we introduced a CXCR4 mimetic peptide, termed CX4-M1, which presents the three extracellular loops (ECLs) of the receptor. CX4-M1 was shown to selectively bind to gp120 of X4-tropic, that is, CXCR4 using, HIV-1, as well as to peptides that present the V3-loops of these gp120 proteins. Furthermore, CX4-M1 selectively inhibits infection of cells with X4-tropic HIV-1. We have now adapted the sequence of the ECLs presented by CX4-M1 to the recently published crystal structure of CXCR4. The binding behavior, as well as the effect on HIV-1 infection, of the resulting peptide (CX4-Mc) was very similar to CX4-M1, validating retrospectively the original design of CX4-M1. A peptide presenting the ECLs of CCR5 (CR5-M), on the other hand, did neither bind to gp120 from X4-tropic HIV-1, nor did it inhibit infection of cells with X4-tropic HIV-1. Furthermore, we could show that CX4-M1, as well as CX4-Mc, but not CR5-M, are selectively recognized by anti-CXCR4 antibodies, bind to SDF-1α, and also inhibit SDF-1α signaling, extending the scope of selective functional CXCR4 mimicry through CX4-M1.


Assuntos
HIV-1/efeitos dos fármacos , Peptídeos/farmacologia , Receptores CXCR4/metabolismo , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Anticorpos/imunologia , Anticorpos/metabolismo , Linhagem Celular/efeitos dos fármacos , Linhagem Celular/virologia , Quimiocina CXCL12/metabolismo , Ensaio de Imunoadsorção Enzimática , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/patogenicidade , Humanos , Ligantes , Mimetismo Molecular , Testes de Neutralização , Peptídeos/química , Peptídeos/imunologia , Peptídeos/metabolismo , Receptores CXCR4/imunologia
7.
ChemMedChem ; 10(3): 566-74, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25655398

RESUMO

Over the last decade, functional selectivity (or ligand bias) has evolved from being a peculiar phenomenon to being recognized as an essential feature of synthetic ligands that target G protein-coupled receptors (GPCRs). The CXC chemokine receptor 3 (CXCR3) is an outstanding platform to study various aspects of biased signaling, because nature itself uses functional selectivity to manipulate receptor signaling. At the same time, CXCR3 is an attractive therapeutic target in the treatment of autoimmune diseases and cancer. Herein we report the discovery of an 8-azaquinazolinone derivative (N-{1-[3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl]ethyl}-4-(4-fluorobutoxy)-N-[(1-methylpiperidin-4-yl)methyl]butanamide, 1 b) that can inhibit CXC chemokine 11 (CXCL11)-dependent G protein activation over ß-arrestin recruitment with 187-fold selectivity. This compound also demonstrates probe-dependent activity, that is, it inhibits CXCL11- over CXCL10-mediated G protein activation with 12-fold selectivity. Together with a previously reported biased negative allosteric modulator from our group, the present study provides additional information on the molecular requirements for allosteric modulation of CXCR3.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Quinazolinonas/química , Quinazolinonas/farmacologia , Receptores CXCR3/imunologia , Arrestinas/imunologia , Compostos Aza/química , Compostos Aza/farmacologia , Quimiocina CXCL11/antagonistas & inibidores , Células HEK293 , Humanos , Ligantes , Transdução de Sinais/efeitos dos fármacos , beta-Arrestinas
8.
ACS Chem Biol ; 10(3): 715-24, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25398025

RESUMO

The G protein-coupled receptors of the C-X-C subfamily form a group among the chemokine receptors whose endogenous ligands are peptides with a common Cys-X-Cys motif. The CXC chemokine receptors 3 and 4 (CXCR3, CXCR4), which are investigated in this study, are linked to severe diseases such as cancer, multiple sclerosis, and HIV infections. Of particular interest, this receptor pair potentially forms a target for a polypharmacological drug treatment. Considering known ligands from public databases, such dual binders have not been identified yet. We therefore applied large-scale docking to the structure of CXCR4 and a homology model of CXCR3 with the goal to predict such dual binders, as well as compounds selective for either one of the receptors. Using signaling and biochemical assays, we showed that more than 50% of these predictions were correct in each category, yielding ligands with excellent binding efficiencies. These results highlight that docking is a suitable tool for the identification of ligands with tailored binding profiles to GPCRs, even when using homology models. More importantly, we present novel CXCR3-CXCR4 dual modulators that might pave the road to understanding the mechanisms of polypharmacological inhibition of these receptors.


Assuntos
Simulação de Acoplamento Molecular , Receptores CXCR3/antagonistas & inibidores , Receptores CXCR4/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Bases de Dados de Compostos Químicos , Descoberta de Drogas , Guanosina 5'-O-(3-Tiotrifosfato)/química , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HEK293 , Humanos , Ligantes , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores CXCR3/química , Receptores CXCR3/metabolismo , Receptores CXCR4/química , Receptores CXCR4/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Radioisótopos de Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA