Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 698: 108731, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33359563

RESUMO

Microbial pathogens, such as Trypanosoma brucei, have an enormous impact on global health and economic systems. Protein kinase A of T. brucei is an attractive drug target as it is an essential enzyme which differs significantly from its human homolog. The hinge region of this protein's regulatory domain is vital for enzymatic function, but its conformation is unknown. Here, the secondary structure of this region has been characterized using NMR and CD spectroscopies. More specifically, three overlapping peptides corresponding to residues T187-I211, G198-Y223 and V220-S245 called peptide 1, peptide 2 and peptide 3, respectively, were studied. The peptide 1 and peptide 2 are chiefly unfolded; only low populations (<10%) of α-helix were detected under the conditions studied. In contrast, the peptide 3 contains a long α-helix whose population is significantly higher; namely, 36% under the conditions studied. Utilizing the dihedral φ and ψ angles calculated on the basis of the NMR data, the conformation of the peptide 3 was calculated and revealed an α-helix spanning residues E230-N241. This α-helix showed amphiphilicity and reversible unfolding and refolding upon heating and cooling. Most fascinating, however, is its capacity to inhibit the activity of the catalytic domain of Trypanosoma equiperdum protein kinase A even though it is quite distinct from the canonical inhibitor motif. Based on this property, we advance that peptoids based on the peptide 3 α-helix could be novel leads for developing anti-trypanosomal therapeutics.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/química , Fragmentos de Peptídeos/química , Inibidores de Proteínas Quinases/química , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Animais , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Ensaios Enzimáticos , Conformação Proteica em alfa-Hélice , Redobramento de Proteína , Desdobramento de Proteína , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Alinhamento de Sequência , Suínos
2.
Front Microbiol ; 11: 1090, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582073

RESUMO

Fusarium oxysporum is a highly destructive plant pathogen and an emerging pathogen of humans. Like other ascomycete fungi, F. oxysporum secretes α-pheromone, a small peptide that functions both as a chemoattractant and as a quorum-sensing signal. Three of the ten amino acid residues of α-pheromone are tryptophan, an amino acid whose sidechain has high affinity for lipid bilayers, suggesting a possible interaction with biological membranes. Here we tested the effect of different lipid environments on α-pheromone structure and function. Using spectroscopic and calorimetric approaches, we show that this peptide interacts with negatively charged model phospholipid vesicles. Fluorescence emission spectroscopy and nuclear magnetic resonance (NMR) measurements revealed a key role of the positively charged groups and Trp residues. Furthermore, NMR-based calculation of the 3D structure in the presence of micelles, formed by lipid surfactants, suggests that α-pheromone can establish an intramolecular disulfide bond between the two cysteine residues during interaction with membranes, but not in the absence of lipid mimetics. Remarkably, this oxidized version of α-pheromone lacks biological activity as a chemoattractant and quorum-sensing molecule. These results suggest the presence of a previously unidentified redox regulated control of α-pheromone activity at the surface of the plasma membrane that could influence the interaction with its cognate G-protein coupled receptor.

3.
J Biol Chem ; 292(9): 3591-3602, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28100777

RESUMO

During sexual development ascomycete fungi produce two types of peptide pheromones termed a and α. The α pheromone from the budding yeast Saccharomyces cerevisiae, a 13-residue peptide that elicits cell cycle arrest and chemotropic growth, has served as paradigm for the interaction of small peptides with their cognate G protein-coupled receptors. However, no structural information is currently available for α pheromones from filamentous ascomycetes, which are significantly shorter and share almost no sequence similarity with the S. cerevisiae homolog. High resolution structure of synthetic α-pheromone from the plant pathogenic ascomycete Fusarium oxysporum revealed the presence of a central ß-turn resembling that of its yeast counterpart. Disruption of the-fold by d-alanine substitution of the conserved central Gly6-Gln7 residues or by random sequence scrambling demonstrated a crucial role for this structural determinant in chemoattractant activity. Unexpectedly, the growth inhibitory effect of F. oxysporum α-pheromone was independent of the cognate G protein-coupled receptors Ste2 and of the central ß-turn but instead required two conserved Trp1-Cys2 residues at the N terminus. These results indicate that, despite their reduced size, fungal α-pheromones contain discrete functional regions with a defined secondary structure that regulate diverse biological processes such as polarity reorientation and cell division.


Assuntos
Fatores Quimiotáticos/química , Proteínas Fúngicas/química , Fusarium/química , Feromônios/química , Ciclo Celular , Núcleo Celular/metabolismo , Cisteína/química , Genes Fúngicos Tipo Acasalamento , Peptídeos/química , Domínios Proteicos , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Saccharomyces cerevisiae/química , Transdução de Sinais , Relação Estrutura-Atividade , Triptofano/química
4.
Invest New Drugs ; 35(3): 260-268, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28120180

RESUMO

Apoptin is a nonstructural protein encoded by one of the three open reading frames of the chicken anemia virus genome. It has attracted a great deal of interest due to its ability to induce apoptosis in multiple transformed and malignant mammalian cell lines without affecting primary and non-transformed cells. However, the use of Apoptin as an anticancer drug is restricted by its strong tendency to aggregate. A number of methods to overcome this problem have been proposed, including transduction techniques to deliver the Apoptin gene into tumor cells, but all such methods have certain drawbacks. Here we describe that a truncated variant of Apoptin, lacking residues 1 to 43, is a soluble, non-aggregating protein that maintains most of the biological properties of wild-type Apoptin when transfected into cells. We show that the cytotoxic effect of this variant is also present when it is added exogenously to cancer cells, but not to normal cells. In addition to the interest this protein has attracted as a promising therapeutic strategy, it is also an excellent model to study the structural properties of Apoptin and how they relate to its mechanism of action.


Assuntos
Antineoplásicos/farmacologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/farmacologia , Apoptose/efeitos dos fármacos , Proteínas do Capsídeo/genética , Linhagem Celular , Linhagem Celular Tumoral , DNA/metabolismo , Escherichia coli/genética , Humanos , Transfecção
5.
Arch Biochem Biophys ; 614: 53-64, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28034642

RESUMO

Apoptin is a 121 residue protein which forms large, soluble aggregates and possesses an exceptionally selectively cytotoxic action on cancer cells. In the accompanying paper, we described the design, production and initial characterization of an Apoptin truncated variant called H6-ApopΔProΔLeu. Whereas both the variant and wild type protein possess similar selective cytotoxicity against cancer cells following transfection, only the variant is cytotoxic when added externally. Remarkably, as observed by gel filtration chromatography and dynamic light scattering, H6-ApopΔProΔLeu lacks the tendency of wild type Apoptin to form large aggregates, which greatly facilitated the study of its biological properties. Here, we characterize the conformation and dynamics of H6-ApopΔProΔLeu. Using a battery of 2D, 3D and (4,2)D NMR spectra, the essentially complete 1H, 13C and 15N resonance assignments of H6-ApopΔProΔLeu were obtained. The analysis of these data shows that the variant is an intrinsically disordered protein, which lacks a preferred conformation. This conclusion is corroborated by a lack of protection against proteolytic cleavage and hydrogen/deuterium exchange. Moreover, the CD spectra are dominated by random coil contributions. Finally, 1H-15N NOE ratios are low, which indicates flexibility on the ps-ns time scale. Interestingly, H6-ApopΔProΔLeu's intrinsically disordered ensemble is not significantly altered by the redox state of its Cys residues or by Thr phosphorylation, which has been proposed to play a key role in Apoptin's selective cytotoxicity. These results serve to better comprehend Apoptin's remarkably selective anticancer action and provide a framework for the future design of improved Apoptin variants.


Assuntos
Antineoplásicos/química , Proteínas do Capsídeo/química , Neoplasias/patologia , Neoplasias/terapia , Linhagem Celular Tumoral , Vírus da Anemia da Galinha , Cisteína/química , Ensaios de Seleção de Medicamentos Antitumorais , Endopeptidase K/química , Humanos , Espectroscopia de Ressonância Magnética , Fosforilação , Conformação Proteica , Dobramento de Proteína , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
6.
Sci Rep ; 6: 38177, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27905530

RESUMO

The mechanism by which the HIV-1 MPER epitope is recognized by the potent neutralizing antibody 10E8 at membrane interfaces remains poorly understood. To solve this problem, we have optimized a 10E8 peptide epitope and analyzed the structure and binding activities of the antibody in membrane and membrane-like environments. The X-ray crystal structure of the Fab-peptide complex in detergents revealed for the first time that the epitope of 10E8 comprises a continuous helix spanning the gp41 MPER/transmembrane domain junction (MPER-N-TMD; Env residues 671-687). The MPER-N-TMD helix projects beyond the tip of the heavy-chain complementarity determining region 3 loop, indicating that the antibody sits parallel to the plane of the membrane in binding the native epitope. Biophysical, biochemical and mutational analyses demonstrated that strengthening the affinity of 10E8 for the TMD helix in a membrane environment, correlated with its neutralizing potency. Our research clarifies the molecular mechanisms underlying broad neutralization of HIV-1 by 10E8, and the structure of its natural epitope. The conclusions of our research will guide future vaccine-design strategies targeting MPER.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Anti-HIV/química , Proteína gp41 do Envelope de HIV/química , HIV-1/química , Fragmentos Fab das Imunoglobulinas/química , Peptídeos/química , Anticorpos Neutralizantes/imunologia , Epitopos/química , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Peptídeos/imunologia , Estrutura Secundária de Proteína
7.
FEBS J ; 283(22): 4176-4191, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27696685

RESUMO

Acute infection by Gram-negative pathogens can induce an exacerbated immune response that leads to lethal septic shock syndrome. Bacterial lipopolysaccharide (LPS) is a major pathogen-associated molecular pattern molecule that can initiate massive and lethal immune system stimulation. Therefore, the development of new and effective LPS-neutralizing agents is a top priority. The eosinophil cationic protein (ECP) is an antimicrobial protein secreted in response to infection, with a remarkable affinity for LPS. In the present study, we demonstrate that ECP is able to neutralize bacterial LPS and inhibit tumor necrosis factor-α production in human macrophages. We also characterized ECP neutralizing activity using progressively truncated LPS mutants, and conclude that the polysaccharide moiety and lipid A portions are required for LPS-mediated neutralization. In addition, we mapped the structural determinants required for the ECP-LPS interaction by nuclear magnetic resonance. Our results show that ECP is able to neutralize LPS and therefore opens a new route for developing novel therapeutic agents based on the ECP structural scaffolding.


Assuntos
Endotoxinas/metabolismo , Proteína Catiônica de Eosinófilo/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Endotoxinas/química , Endotoxinas/farmacologia , Proteína Catiônica de Eosinófilo/química , Proteína Catiônica de Eosinófilo/farmacologia , Humanos , Cinética , Lipopolissacarídeos/química , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Termodinâmica , Fator de Necrose Tumoral alfa/metabolismo
8.
J Biol Chem ; 291(40): 20962-20975, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27502274

RESUMO

It has been suggested that DYNLT1, a dynein light chain known to bind to various cellular and viral proteins, can function both as a molecular clamp and as a microtubule-cargo adapter. Recent data have shown that the DYNLT1 homodimer binds to two dynein intermediate chains to subsequently link cargo proteins such as the guanine nucleotide exchange factor Lfc or the small GTPases RagA and Rab3D. Although over 20 DYNLT1-interacting proteins have been reported, the exact sequence requirements that enable their association to the canonical binding groove or to the secondary site within the DYNLT1 surface are unknown. We describe herein the sequence recognition properties of the hydrophobic groove of DYNLT1 known to accommodate dynein intermediate chain. Using a pepscan approach, we have substituted each amino acid within the interacting peptide for all 20 natural amino acids and identified novel binding sequences. Our data led us to propose activin receptor IIB as a novel DYNLT1 ligand and suggest that DYNLT1 functions as a molecular dimerization engine bringing together two receptor monomers in the cytoplasmic side of the membrane. In addition, we provide evidence regarding a dual binding mode adopted by certain interacting partners such as Lfc or the parathyroid hormone receptor. Finally, we have used NMR spectroscopy to obtain the solution structure of human DYNLT1 forming a complex with dynein intermediate chain of ∼74 kDa; it is the first mammalian structure available.


Assuntos
Dineínas/química , Dineínas/metabolismo , Multimerização Proteica/fisiologia , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Animais , Células COS , Chlorocebus aethiops , Dineínas/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Ressonância Magnética Nuclear Biomolecular , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
9.
Structure ; 24(4): 606-616, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27021163

RESUMO

The titin I27 module from human cardiac titin has become a standard in protein nanomechanics. A proline-scanning study of its mechanical clamp found three mechanically hypomorphic mutants and a paradoxically hypermorphic mutant (I27Y9P). Both types of mutants have been commonly used as substrates of several protein unfoldase machineries in studies relating protein mechanostability to translocation or degradation rates. Using single-molecule force spectroscopy based on atomic force microscopy, polyprotein engineering, and steered molecular dynamics simulations, we show that, unexpectedly, the mechanostability of the Y9P variant is comparable to the wild type. Furthermore, the NMR analysis of homomeric polyproteins of this variant suggests that these constructs may induce slight structural perturbations in the monomer, which may explain some minor differences in this variant's properties; namely the abolishment of the mechanical unfolding intermediate and a reduced thermal stability. Our results clarify a previously reported paradoxical result in protein nanomechanics and contribute to refining our toolbox for understanding the unfolding mechanism used by translocases and degradation machines.


Assuntos
Conectina/química , Conectina/genética , Variação Genética , Poliproteínas/metabolismo , Prolina/genética , Tirosina/genética , Conectina/metabolismo , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Multimerização Proteica , Estabilidade Proteica , Estrutura Terciária de Proteína , Desdobramento de Proteína , Imagem Individual de Molécula
10.
FEBS J ; 282(20): 3945-58, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26227614

RESUMO

It has been suggested that DYNLT, a dynein light chain known to bind to various cellular and viral proteins, can function as a microtubule-cargo adaptor. Recent data showed that DYNLT links the small GTPase Rab3D to microtubules and, for this to occur, the DYNLT homodimer needs to display a binding site for dynein intermediate chain together with a binding site for the small GTPase. We have analysed in detail how RagA, another small GTPase, associates to DYNLT. After narrowing down the binding site of RagA to DYNLT we could identify that a ß strand, part of the RagA G3 box involved in nucleotide binding, mediates this association. Interestingly, we show that both microtubule-associated DYNLT and cytoplasmic DYNLT are equally able to bind to the small GTPases Rab3D and RagA. Using NMR spectroscopy, we analysed the binding of dynein intermediate chain and RagA to mammalian DYNLT. Our experiments identify residues of DYNLT affected by dynein intermediate chain binding and residues affected by RagA binding, hence distinguishing the docking site for each of them. In summary, our results shed light on the mechanisms adopted by DYNLT when binding to protein cargoes that become transported alongside microtubules bound to the dynein motor.


Assuntos
Citoplasma/metabolismo , Dineínas do Citoplasma/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas rab3 de Ligação ao GTP/metabolismo , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Citoplasma/enzimologia , Dineínas do Citoplasma/química , Dineínas do Citoplasma/genética , Dimerização , Dineínas/química , Dineínas/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Microtúbulos/enzimologia , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas rab3 de Ligação ao GTP/química , Proteínas rab3 de Ligação ao GTP/genética
11.
PLoS One ; 10(4): e0118606, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25897750

RESUMO

Cyclic N6-threonylcarbamoyladenosine ('cyclic t6A', ct(6)A) is a non-thiolated hypermodification found in transfer RNAs (tRNAs) in bacteria, protists, fungi and plants. In bacteria and yeast cells ct(6)A has been shown to enhance translation fidelity and efficiency of ANN codons by improving the faithful discrimination of aminoacylated tRNAs by the ribosome. To further the understanding of ct(6)A biology we have determined the high-resolution crystal structures of CsdL/TcdA in complex with AMP and ATP, an E1-like activating enzyme from Escherichia coli, which catalyzes the ATP-dependent dehydration of t6A to form ct(6)A. CsdL/TcdA is a dimer whose structural integrity and dimer interface depend critically on strongly bound K+ and Na+ cations. By using biochemical assays and small-angle X-ray scattering we show that CsdL/TcdA can associate with tRNA with a 1:1 stoichiometry and with the proper position and orientation for the cyclization of t6A. Furthermore, we show by nuclear magnetic resonance that CsdL/TcdA engages in transient interactions with CsdA and CsdE, which, in the latter case, involve catalytically important residues. These short-lived interactions may underpin the precise channeling of sulfur atoms from cysteine to CsdL/TcdA as previously characterized. In summary, the combination of structural, biophysical and biochemical methods applied to CsdL/TcdA has afforded a more thorough understanding of how the structure of this E1-like enzyme has been fine tuned to accomplish ct(6)A synthesis on tRNAs while providing support for the notion that CsdA and CsdE are able to functionally interact with CsdL/TcdA.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , RNA de Transferência/metabolismo , Enzimas Ativadoras de Ubiquitina/química , Enzimas Ativadoras de Ubiquitina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Escherichia coli/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
12.
Biochim Biophys Acta ; 1844(10): 1808-19, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25091198

RESUMO

Human centrosomal proteins show a significant, 3.5 fold, bias to be both unstructured and coiled-coils with respect to generic human proteins, based on results from state of the art bioinformatics tools. We hypothesize that this bias means that these proteins adopt an ensemble of disordered and partially helical conformations, with the latter becoming stabilized when these proteins form complexes. Characterization of the structural properties of 13 peptides from 10 different centrosomal proteins ranging in size from 20 to 61 residues by biophysical methods led us to confirm our hypothesis in most cases. Interestingly, the secondary structure adopted by most of these peptides becomes stabilized at acidic pH and it is concentration dependent. For two of them, PIK3R1(453-513) and BRCA1(1253-1273), we observed not only the stabilization of helical structure through self-association, but also the presence of ß-structures linked to the formation of high molecular weight oligomers. These oligomers are the predominant forms detected by CD, but unobservable by liquid state NMR. BRCA1(1397-1424) and MAP3K11(396-441) populate helical structures that can also self-associate at pH3 through oligomeric species. Four peptides, derived from three proteins, namely CCNA2(103-123), BRCA1(1253-1273), BRCA1(1397-1424) and PIK3R1(453-513), can form intermolecular associations that are concomitant with alpha or beta structure stabilization. The self-phosphorylation previously described for the kinase NEK2 did not lead to any stabilization in the peptide's structure of NEK2(303-333), NEK2(341-361), and NEK2(410-430). Based on these results, obtained from a series of peptides derived from a significant number of different centrosomal proteins, we propose that conformational polymorphism, modulated by intermolecular interactions is a general property of centrosomal proteins.

13.
Arch Biochem Biophys ; 532(1): 39-45, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23376038

RESUMO

Actinoporins are water-soluble proteins with the ability to form pores upon insertion into biological membranes. They constitute a family of proteins with high degree of sequence identities but different hemolytic activities, suggesting that minor conformational arrangements result in major functional changes. A good example of this situation is the sea anemone Stichodactyla helianthus which produces two very similar actinoporins, sticholysins I (StnI) and II (StnII), but of very different hemolytic efficiency. Within this idea, given that the high resolution three-dimensional structure of StnII is already known, we have now solved that one corresponding to StnI in order to analyze the influence of particular residues on the conformation and activity of these proteins. In addition, random mutagenesis has been also used to produce five less hemolytic variants of StnI. All these mutations map to functionally relevant regions because they are probably involved in conformational changes associated with pore formation, which take place after membrane binding, and involve long-distance rearrangements of the polypeptide chain of actinoporins.


Assuntos
Proteínas Citotóxicas Formadoras de Poros/química , Anêmonas-do-Mar/química , Sequência de Aminoácidos , Animais , Hemólise/efeitos dos fármacos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Fosfolipídeos/metabolismo , Mutação Puntual , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Conformação Proteica , Anêmonas-do-Mar/genética , Anêmonas-do-Mar/metabolismo , Alinhamento de Sequência , Ovinos
14.
PLoS Biol ; 10(5): e1001335, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22666178

RESUMO

Amyloidogenic neurodegenerative diseases are incurable conditions with high social impact that are typically caused by specific, largely disordered proteins. However, the underlying molecular mechanism remains elusive to established techniques. A favored hypothesis postulates that a critical conformational change in the monomer (an ideal therapeutic target) in these "neurotoxic proteins" triggers the pathogenic cascade. We use force spectroscopy and a novel methodology for unequivocal single-molecule identification to demonstrate a rich conformational polymorphism in the monomer of four representative neurotoxic proteins. This polymorphism strongly correlates with amyloidogenesis and neurotoxicity: it is absent in a fibrillization-incompetent mutant, favored by familial-disease mutations and diminished by a surprisingly promiscuous inhibitor of the critical monomeric ß-conformational change, neurotoxicity, and neurodegeneration. Hence, we postulate that specific mechanostable conformers are the cause of these diseases, representing important new early-diagnostic and therapeutic targets. The demonstrated ability to inhibit the conformational heterogeneity of these proteins by a single pharmacological agent reveals common features in the monomer and suggests a common pathway to diagnose, prevent, halt, or reverse multiple neurodegenerative diseases.


Assuntos
Proteínas Amiloidogênicas/química , Doenças Neurodegenerativas/patologia , Neurotoxinas/química , Engenharia de Proteínas/métodos , Sequência de Aminoácidos , Animais , Fenômenos Biomecânicos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Clonagem Molecular , Humanos , Dados de Sequência Molecular , Nanotecnologia , Nefelometria e Turbidimetria , Doenças Neurodegenerativas/genética , Neurotoxinas/genética , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/genética , Plasmídeos/química , Plasmídeos/genética , Poliproteínas/química , Estabilidade Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína , Ratos , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Análise Espectral/métodos , Termodinâmica , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/genética , alfa-Sinucleína/química , alfa-Sinucleína/genética
15.
Biochem Biophys Res Commun ; 414(3): 493-8, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21971545

RESUMO

LC8 dynein light chain (now termed DYNLL1 and DYNLL2 in mammals), a dimeric 89 amino acid protein, is a component of the dynein multi-protein complex. However a substantial amount of DYNLL1 is not associated to microtubules and it can thus interact with dozens of cellular and viral proteins that display well-defined, short linear motifs. Using DYNLL1 as bait in a yeast two-hybrid screen of a human heart library we identified ATMIN, an ATM kinase-interacting protein, as a DYNLL1-binding partner. Interestingly, ATMIN displays at least 18 SQ/TQ motifs in its sequence and DYNLL1 is known to bind to proteins with KXTQT motifs. Using pepscan and yeast two-hybrid techniques we show that DYNLL1 binds to multiple SQ/TQ motifs present in the carboxy-terminal domain of ATMIN. Recombinant expression and purification of the DYNLL1-binding region of ATMIN allowed us to obtain a polypeptide with an apparent molecular mass in gel filtration close to 400 kDa that could bind to DYNLL1 in vitro. The NMR data-driven modelled complexes of DYNLL1 with two selected ATMIN peptides revealed a similar mode of binding to that observed between DYNLL1 and other peptide targets. Remarkably, co-expression of mCherry-DYNLL1 and GFP-ATMIN mutually affected intracellular protein localization. In GFP-ATMIN expressing-cells DNA damage induced efficiently nuclear foci formation, which was partly impeded by the presence of mCherry-DYNLL1. Thus, our results imply a potential cellular interference between DYNLL1 and ATMIN functions.


Assuntos
Proteínas de Transporte/metabolismo , Dineínas do Citoplasma/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/genética , Humanos , Espaço Intracelular/metabolismo , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/genética , Estrutura Terciária de Proteína/genética , Fatores de Transcrição , Técnicas do Sistema de Duplo-Híbrido
16.
J Med Chem ; 54(14): 5237-44, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21696142

RESUMO

Sequence analysis of eosinophil cationic protein (ECP), a ribonuclease of broad antimicrobial activity, allowed identification of residues 1-45 as the antimicrobial domain. We have further dissected ECP(1-45) with a view to defining the minimal requirements for antimicrobial activity. Structure-based downsizing has focused on both α-helices of ECP(1-45) and yielded analogues with substantial potency against Gram-negative and -positive strains. Analogues ECP(8-36) and ECP(6-17)-Ahx-(23-36) (Ahx, 6-aminohexanoic acid) involve 36% and 40% size reduction relative to (1-45), respectively, and display a remarkably ECP-like antimicrobial profile. Both retain segments required for self-aggregation and lipolysaccharide binding, as well as the bacterial agglutination ability of parent ECP. Analogue (6-17)-Ahx-(23-36), in particular, is shown by NMR to preserve the helical traits of the native 8-16 (α1) and 33-36 (α2) regions and can be proposed as the minimal structure capable of reproducing the activity of the entire protein.


Assuntos
Antibacterianos/química , Proteína Catiônica de Eosinófilo/química , Peptídeos/química , Aglutinação , Sequência de Aminoácidos , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hemólise , Humanos , Lipopolissacarídeos/química , Lipossomos , Espectroscopia de Ressonância Magnética , Micelas , Testes de Sensibilidade Microbiana , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/síntese química , Peptídeos/farmacologia , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
17.
Biophys J ; 98(11): 2702-11, 2010 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-20513415

RESUMO

Eosinophil cationic protein (ECP) is a highly stable, cytotoxic ribonuclease with the ability to enter and disrupt membranes that participates in innate immune defense against parasites but also kills human cells. We have used NMR spectroscopy to characterize the binding of ECP to membrane and heparin mimetics at a residue level. We believe we have identified three Arg-rich surface loops and Trp(35) as crucial for membrane binding. Importantly, we have provided evidence that the interaction surface of ECP with heparin mimetics is extended with respect to that previously described (fragment 34-38). We believe we have identified new sites involved in the interaction for the first time, and shown that the N-terminal alpha-helix, the third loop, and the first and last beta-strands are key for heparin binding. We have also shown that a biologically active ECP N-terminal fragment comprising the first 45 residues (ECP1-45) retains the capacity to bind membrane and heparin mimetics, thus neither the ECP tertiary structure nor its high conformational stability are required for cytotoxicity.


Assuntos
Proteína Catiônica de Eosinófilo/química , Heparina/química , Membranas/química , Biomimética , Proteína Catiônica de Eosinófilo/genética , Escherichia coli , Micelas , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Prótons , Trifluoretanol/química , Água/química
18.
FEBS J ; 277(10): 2340-50, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20412299

RESUMO

Human dynein light chain 1 (DYNLL1) is a dimeric 89-residue protein that is known to be involved in cargo binding within the dynein multiprotein complex. Over 20 protein targets, of both cellular and viral origin, have been shown to interact with DYNLL1, and some of them are transported in a retrograde manner along microtubules. Using DYNLL1 as bait in a yeast two-hybrid screen with a human heart library, we identified GRINL1A (ionotropic glutamate receptor N-methyl-D-aspartate-like 1A), a homolog of the ionotropic glutamate receptor N-methyl D-aspartate, as a DYNLL1 binding partner. Binding of DYNLL1 to GRINL1A was also demonstrated using GST fusion proteins and pepscan membranes. Progressive deletions allowed us to narrow the DYNLL1 binding region of GRINL1A to the sequence REIGVGCDL. Combining these results with NMR data, we have modelled the structure of the GRINL1A-DYNLL1 complex. By analogy with known structures of DYNLL1 bound to BCL-2-interacting mediator (BIM) or neuronal nitric oxide synthase (nNOS), the GRINL1A peptide also adopts an extended beta-strand conformation that expands the central beta-sheet within DYNLL1. Structural comparison with the nNOS-DYNLL1 complex reveals that a glycine residue of GRINL1A occupies the conserved glutamine site within the DYNLL1 binding groove. Hence, our data identify a novel membrane-associated DYNLL1 binding partner and suggest that additional DYNLL1-binding partners are present near this glutamate channel homolog.


Assuntos
Dineínas do Citoplasma/química , Dineínas do Citoplasma/metabolismo , Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Sequência de Aminoácidos , Sequência Consenso/genética , Dineínas do Citoplasma/genética , Dineínas , Deleção de Genes , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica/fisiologia , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , RNA Polimerase II , Receptores de Glutamato/genética , Técnicas do Sistema de Duplo-Híbrido
19.
Proteins ; 78(8): 1959-70, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20408172

RESUMO

Sticholysin I (StnI) is an actinoporin produced by the sea anemone Stichodactyla helianthus that binds biological and model membranes forming oligomeric pores. Both a surface cluster of aromatic rings and the N-terminal region are involved in pore formation. To characterize the membrane binding by StnI, we have studied by (1)H-NMR the environment of these regions in water and in the presence of membrane-mimicking micelles. Unlike other peptides from homologous actinoporins, the synthetic peptide corresponding to residues 1-30 tends to form helix in water and is more helical in either trifluoroethanol or dodecylphosphocholine (DPC) micelles. In these environments, it forms a helix-turn-helix motif with the last alpha-helical segment matching the native helix-alpha(1) (residues 14-24) present in the complete protein. The first helix (residues 4-9) is less populated and is not present in the water-soluble protein structure. The characterization of wild-type StnI structure in micelles shows that the helix-alpha(1) is maintained in its native structure and that this micellar environment does not provoke its detachment from the protein core. Finally, the study of the aromatic resonances has shown that the motional flexibility of specific rings is perturbed in the presence of micelles. On these bases, the implication of the aromatic rings of Trp-111, Tyr-112, Trp-115, Tyr-132, Tyr-136, and Tyr-137, in the interaction between StnI and the micelle is discussed. Based on all the findings, a revised model for StnI interaction with membranes is proposed, which accounts for differences in its behavior as compared with other highly homologous sticholysins.


Assuntos
Membranas Artificiais , Sequência de Aminoácidos , Aminoácidos/química , Animais , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Micelas , Modelos Moleculares , Dados de Sequência Molecular , Compostos Orgânicos/química , Compostos Orgânicos/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Estrutura Secundária de Proteína , Anêmonas-do-Mar/química , Alinhamento de Sequência , Soluções , Trifluoretanol/química , Água/química
20.
Biochem Biophys Res Commun ; 393(3): 466-70, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20152799

RESUMO

Multiheme proteins play major roles in various biological systems. Structural information on these systems in solution is crucial to understand their functional mechanisms. However, the presence of numerous proton-containing groups in the heme cofactors and the magnetic properties of the heme iron, in particular in the oxidised state, complicates significantly the assignment of the NMR signals. Consequently, the multiheme proteins superfamily is extremely under-represented in structural databases, which constitutes a severe bottleneck in the elucidation of their structural-functional relationships. In this work, we present a strategy that simplifies the assignment of the NMR signals in multiheme proteins and, concomitantly, their solution structure determination, using the triheme cytochrome PpcA from the bacterium Geobacter sulfurreducens as a model. Cost-effective isotopic labeling was used to double label (13C/15N) the protein in its polypeptide chain, with the correct folding and heme post-translational modifications. The combined analysis of 1H-13C HSQC NMR spectra obtained for labeled and unlabeled samples of PpcA allowed a straight discrimination between the heme cofactors and the polypeptide chain signals and their confident assignment. The results presented here will be the foundations to assist solution structure determination of multiheme proteins, which are still very scarce in the literature.


Assuntos
Coenzimas/química , Hemeproteínas/química , Ressonância Magnética Nuclear Biomolecular/métodos , Cristalografia , Citocromos/química , Geobacter/enzimologia , Heme/química , Marcação por Isótopo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA