Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 19(5): e2400090, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719592

RESUMO

The production of lentiviral vectors (LVs) pseudotyped with the vesicular stomatitis virus envelope glycoprotein (VSV-G) is limited by the associated cytotoxicity of the envelope and by the production methods used, such as transient transfection of adherent cell lines. In this study, we established stable suspension producer cell lines for scalable and serum-free LV production derived from two stable, inducible packaging cell lines, named GPRG and GPRTG. The established polyclonal producer cell lines produce self-inactivating (SIN) LVs carrying a WAS-T2A-GFP construct at an average infectious titer of up to 4.64 × 107 TU mL-1 in a semi-perfusion process in a shake flask and can be generated in less than two months. The derived monoclonal cell lines are functionally stable in continuous culture and produce an average infectious titer of up to 9.38 × 107 TU mL-1 in a semi-perfusion shake flask process. The producer clones are able to maintain a productivity of >1 × 107 TU mL-1 day-1 for up to 29 consecutive days in a non-optimized 5 L stirred-tank bioreactor perfusion process, representing a major milestone in the field of LV manufacturing. As the producer cell lines are based on an inducible Tet-off expression system, the established process allows LV production in the absence of inducers such as antibiotics. The purified LVs efficiently transduce human CD34+ cells, reducing the LV quantities required for gene and cell therapy applications.


Assuntos
Reatores Biológicos , Vetores Genéticos , Lentivirus , Lentivirus/genética , Humanos , Vetores Genéticos/genética , Meios de Cultura Livres de Soro , Linhagem Celular , Técnicas de Cultura de Células/métodos , Cultura de Vírus/métodos , Células HEK293 , Transfecção/métodos
2.
Biochem J ; 480(2): 161-176, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719792

RESUMO

Chronic myeloid leukemia (CML) was considered for a long time one of the most hostile leukemia that was incurable for most of the patients, predominantly due to the extreme resistance to chemotherapy. Part of the resistance to cell death (apoptosis) is the result of increased levels of anti-apoptotic and decreased levels of pro-apoptotic member of the BCL-2 family induced by the BCR-ABL1 oncoprotein. BCR-ABL1 is a constitutively active tyrosine kinase responsible for initiating multiple and oncogenic signaling pathways. With the development of specific BCR-ABL1 tyrosine kinase inhibitors (TKIs) CML became a much more tractable disease. Nevertheless, TKIs do not cure CML patients and a substantial number of them develop intolerance or become resistant to the treatment. Therefore, novel anti-cancer strategies must be developed to treat CML patients independently or in combination with TKIs. Here, we will discuss the mechanisms of BCR-ABL1-dependent and -independent resistance to TKIs and the use of BH3-mimetics as a potential tool to fight CML.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Inibidores de Proteínas Quinases , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais
3.
Pharmaceutics ; 14(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35057108

RESUMO

The constitutively active BCR-ABL1 tyrosine kinase, found in t(9;22)(q34;q11) chromosomal translocation-derived leukemia, initiates an extremely complex signaling transduction cascade that induces a strong state of resistance to chemotherapy. Targeted therapies based on tyrosine kinase inhibitors (TKIs), such as imatinib, dasatinib, nilotinib, bosutinib, and ponatinib, have revolutionized the treatment of BCR-ABL1-driven leukemia, particularly chronic myeloid leukemia (CML). However, TKIs do not cure CML patients, as some develop TKI resistance and the majority relapse upon withdrawal from treatment. Importantly, although BCR-ABL1 tyrosine kinase is necessary to initiate and establish the malignant phenotype of Ph-related leukemia, in the later advanced phase of the disease, BCR-ABL1-independent mechanisms are also in place. Here, we present an overview of the signaling pathways initiated by BCR-ABL1 and discuss the major challenges regarding immunologic/pharmacologic combined therapies.

5.
Blood Adv ; 4(20): 5062-5077, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33080008

RESUMO

The specific targeting of inhibitor of apoptosis (IAP) proteins by Smac-mimetic (SM) drugs, such as birinapant, has been tested in clinical trials of acute myeloid leukemia (AML) and certain solid cancers. Despite their promising safety profile, SMs have had variable and limited success. Using a library of more than 5700 bioactive compounds, we screened for approaches that could sensitize AML cells to birinapant and identified multidrug resistance protein 1 inhibitors (MDR1i) as a class of clinically approved drugs that can enhance the efficacy of SM therapy. Genetic or pharmacological inhibition of MDR1 increased intracellular levels of birinapant and sensitized AML cells from leukemia murine models, human leukemia cell lines, and primary AML samples to killing by birinapant. The combination of clinical MDR1 and IAP inhibitors was well tolerated in vivo and more effective against leukemic cells, compared with normal hematopoietic progenitors. Importantly, birinapant combined with third-generation MDR1i effectively killed murine leukemic stem cells (LSCs) and prolonged survival of AML-burdened mice, suggesting a therapeutic opportunity for AML. This study identified a drug combination strategy that, by efficiently killing LSCs, may have the potential to improve outcomes in patients with AML.


Assuntos
Leucemia Mieloide Aguda , Animais , Disponibilidade Biológica , Dipeptídeos , Humanos , Indóis , Proteínas Inibidoras de Apoptose/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos
6.
Viruses ; 12(8)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824616

RESUMO

Chronic hepatitis B virus (HBV) infection remains a global health threat and affects hundreds of millions worldwide. Small molecule compounds that mimic natural antagonists of inhibitor of apoptosis (IAP) proteins, known as Smac-mimetics (second mitochondria-derived activator of caspases-mimetics), can promote the death of HBV-replicating liver cells and promote clearance of infection in preclinical models of HBV infection. The Smac-mimetic birinapant is a substrate of the multidrug resistance protein 1 (MDR1) efflux pump, and therefore inhibitors of MDR1 increase intracellular concentration of birinapant in MDR1 expressing cells. Liver cells are known to express MDR1 and other drug pump proteins. In this study, we investigated whether combining the clinical drugs, birinapant and the MDR1 inhibitor zosuquidar, increases the efficacy of birinapant in killing HBV expressing liver cells. We showed that this combination treatment is well tolerated and, compared to birinapant single agent, was more efficient at inducing death of HBV-positive liver cells and improving HBV-DNA and HBV surface antigen (HBsAg) control kinetics in an immunocompetent mouse model of HBV infection. Thus, this study identifies a novel and safe combinatorial treatment strategy to potentiate substantial reduction of HBV replication using an IAP antagonist.


Assuntos
Antivirais/uso terapêutico , Dibenzocicloeptenos/uso terapêutico , Dipeptídeos/uso terapêutico , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B Crônica/tratamento farmacológico , Indóis/uso terapêutico , Quinolinas/uso terapêutico , Replicação Viral/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Modelos Animais de Doenças , Quimioterapia Combinada , Células Hep G2 , Vírus da Hepatite B/fisiologia , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Nat Commun ; 11(1): 3150, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32561755

RESUMO

MLKL is the essential effector of necroptosis, a form of programmed lytic cell death. We have isolated a mouse strain with a single missense mutation, MlklD139V, that alters the two-helix 'brace' that connects the killer four-helix bundle and regulatory pseudokinase domains. This confers constitutive, RIPK3 independent killing activity to MLKL. Homozygous mutant mice develop lethal postnatal inflammation of the salivary glands and mediastinum. The normal embryonic development of MlklD139V homozygotes until birth, and the absence of any overt phenotype in heterozygotes provides important in vivo precedent for the capacity of cells to clear activated MLKL. These observations offer an important insight into the potential disease-modulating roles of three common human MLKL polymorphisms that encode amino acid substitutions within or adjacent to the brace region. Compound heterozygosity of these variants is found at up to 12-fold the expected frequency in patients that suffer from a pediatric autoinflammatory disease, chronic recurrent multifocal osteomyelitis (CRMO).


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Sistema Hematopoético/patologia , Necroptose/genética , Proteínas Quinases/genética , Animais , Animais Recém-Nascidos , Doenças Hereditárias Autoinflamatórias , Humanos , Inflamação/genética , Camundongos , Mutação de Sentido Incorreto , Osteomielite/genética , Proteínas Quinases/metabolismo
8.
Cells ; 9(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053868

RESUMO

It is well accepted that the ability of cancer cells to circumvent the cell death program that untransformed cells are subject to helps promote tumor growth. Strategies designed to reinstate the cell death program in cancer cells have therefore been investigated for decades. Overexpression of members of the Inhibitor of APoptosis (IAP) protein family is one possible mechanism hindering the death of cancer cells. To promote cell death, drugs that mimic natural IAP antagonists, such as second mitochondria-derived activator of caspases (Smac/DIABLO) were developed. Smac-Mimetics (SMs) have entered clinical trials for hematological and solid cancers, unfortunately with variable and limited results so far. This review explores the use of SMs for the treatment of cancer, their potential to synergize with up-coming treatments and, finally, discusses the challenges and optimism facing this strategy.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Proteína 3 com Repetições IAP de Baculovírus/genética , Proteínas Inibidoras de Apoptose/genética , Proteínas Mitocondriais/genética , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/uso terapêutico , Biomimética , Proliferação de Células/efeitos dos fármacos , Ensaios Clínicos como Assunto , Humanos , Proteínas Mitocondriais/uso terapêutico , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica
9.
Mol Cell ; 66(5): 698-710.e5, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28506461

RESUMO

TNF is an inflammatory cytokine that upon binding to its receptor, TNFR1, can drive cytokine production, cell survival, or cell death. TNFR1 stimulation causes activation of NF-κB, p38α, and its downstream effector kinase MK2, thereby promoting transcription, mRNA stabilization, and translation of target genes. Here we show that TNF-induced activation of MK2 results in global RIPK1 phosphorylation. MK2 directly phosphorylates RIPK1 at residue S321, which inhibits its ability to bind FADD/caspase-8 and induce RIPK1-kinase-dependent apoptosis and necroptosis. Consistently, a phospho-mimetic S321D RIPK1 mutation limits TNF-induced death. Mechanistically, we find that phosphorylation of S321 inhibits RIPK1 kinase activation. We further show that cytosolic RIPK1 contributes to complex-II-mediated cell death, independent of its recruitment to complex-I, suggesting that complex-II originates from both RIPK1 in complex-I and cytosolic RIPK1. Thus, MK2-mediated phosphorylation of RIPK1 serves as a checkpoint within the TNF signaling pathway that integrates cell survival and cytokine production.


Assuntos
Apoptose/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Caspase 8/metabolismo , Relação Dose-Resposta a Droga , Proteína de Domínio de Morte Associada a Fas/metabolismo , Células HT29 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , MAP Quinase Quinase Quinases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos , NF-kappa B/metabolismo , Necrose , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Transfecção
10.
Proteomics Clin Appl ; 11(9-10)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28447382

RESUMO

PURPOSE: Chromosomal translocation of the mixed lineage leukemia (MLL) locus generates fusion proteins that drive acute myeloid leukemia (AML) resulting in atypical histone methyltransferase activity and alterations in the epigenetic regulation of gene expression. Targeting histone regulators, such as Enhancer of Zeste Homologue 2 (EZH2), has shown promise in AML. Profiling differential protein expression following inhibition of epigenetic regulators in AML may help to identify novel targets for therapeutics. EXPERIMENTAL DESIGN: Murine models of AML combined with quantitative SILAC analysis were used to identify differentially expressed proteins following inhibition of EZH2 activity using 3-Deazaneplanocin A (DZnep). Western blotting and flow cytometry were used to validate a subset of differentially expressed proteins. Gene set analysis was used to determine changes to reported EZH2 target genes. RESULTS: Our quantitative proteomic analysis and subsequent validation of protein changes identified that epigenetic therapy leads to cell death preceded by the induction of differentiation with concurrent p53 up-regulation and cell cycle arrest. Gene set analysis revealed a specific subset of EZH2 target genes that were regulated by DZnep in AML. CONCLUSION AND CLINICAL RELEVANCE: These discoveries highlight how this new class of drugs affects AML cell biology and cell survival, and may help identify novel targets and strategies to increase treatment efficacy.


Assuntos
Adenosina/análogos & derivados , Morte Celular/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Terapia de Alvo Molecular , Proteômica , Adenosina/farmacologia , Adenosina/uso terapêutico , Animais , Carcinogênese/efeitos dos fármacos , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos
11.
Trends Mol Med ; 23(3): 264-281, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28196625

RESUMO

Malignant cells must circumvent endogenous cell death pathways to survive and develop into cancers. Acquired cell death resistance also sets up malignant cells to survive anticancer therapies. Acute Myeloid Leukemia (AML) is an aggressive blood cancer characterized by high relapse rate and resistance to cytotoxic therapies. Recent collaborative profiling projects have led to a greater understanding of the 'fearful symmetry' of the genomic landscape of AML, and point to the development of novel potential therapies that can overcome factors linked to chemoresistance. We review here the most recent research in the genetics of AML and how these discoveries have led, or might lead, to therapies that specifically activate cell death pathways to substantially challenge this 'fearful' disease.


Assuntos
Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Metilases de Modificação do DNA/antagonistas & inibidores , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Terapia de Alvo Molecular/métodos , Peptidomiméticos/farmacologia , Peptidomiméticos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
12.
Immunol Cell Biol ; 95(2): 137-145, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27922620

RESUMO

Resistance to caspase-dependent apoptosis is often responsible for treatment failures in cancer. Finding novel therapeutic strategies that can activate alternative cell death programs appears to be appealing. Necroptosis is a form of programmed necrosis that occurs under caspase-deficient conditions. This alternative form of cell death has recently emerged as a potential anticancer therapy that could overcome apoptosis resistance. A growing understanding of the molecular events triggering necroptosis helped to examine its implication in cancer development and to define new therapeutic strategies. Genetic and proteomic analysis suggest that necroptosis is deregulated in many cancers. Various preclinical and clinical compounds induced necroptosis and have demonstrated significant therapeutic efficacy. Moreover, accumulating evidence has shown that necroptosis promotes anticancer immune response. A better knowledge of the cascade of events regulating necroptosis is expected to assess the feasibility of its therapeutic exploitation for cancer therapy.


Assuntos
Apoptose , Neoplasias/patologia , Animais , Carcinogênese/patologia , Humanos , Vigilância Imunológica , Modelos Biológicos , Necrose , Neoplasias/imunologia , Neoplasias/terapia
13.
Blood Adv ; 1(15): 1067-1079, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29296749

RESUMO

High expression of the α chain of the interleukin-3 receptor (IL-3Rα; CD123) is a hallmark of acute myeloid leukemia (AML) leukemic stem cells (LSCs). Elevated CD123 expression is part of the diagnostic immunophenotyping of myeloid leukemia, and higher expression is associated with poor prognosis. However, the biological basis of the poorer prognosis is unclear, and may include heightened IL-3 signaling and non-cell autonomous interactions with the bone marrow (BM) microenvironment. We used TF-1 cells expressing different levels of CD123 and found elevated CD123 levels amplified the proliferative response to exogenous IL-3 and maintained viability in reducing IL-3 concentrations. This was associated with stronger activation of STAT5, Akt, and extracellular signal-regulated kinase 1/2 in vitro. Surprisingly, in vivo e14.5 fetal liver cells transduced with retroviral constructs to express high CD123 failed to engraft in syngeneic recipients. In exploring the underlying mechanism for this, we found that CXCR4, a key molecule involved in LSC/BM interactions, was specifically downregulated in CD123 overexpressing cells in a manner dependent on IL-3 signaling. CXCR4 downregulation was sufficient to alter the chemotactic response of hematopoietic cells to stromal derived factor-1 (SDF-1). Thus, we propose that the overexpression of CD123 in AML LSC dictates their location by altering CXCR4/SDF-1 interaction in the BM, raising the possibility that this mechanism underpins the egress of BM AML LSC and more mature cells into the circulation.

15.
Sci Transl Med ; 8(339): 339ra69, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27194727

RESUMO

Resistance to chemotherapy is a major problem in cancer treatment, and it is frequently associated with failure of tumor cells to undergo apoptosis. Birinapant, a clinical SMAC mimetic, had been designed to mimic the interaction between inhibitor of apoptosis proteins (IAPs) and SMAC/Diablo, thereby relieving IAP-mediated caspase inhibition and promoting apoptosis of cancer cells. We show that acute myeloid leukemia (AML) cells are sensitive to birinapant-induced death and that the clinical caspase inhibitor emricasan/IDN-6556 augments, rather than prevents, killing by birinapant. Deletion of caspase-8 sensitized AML to birinapant, whereas combined loss of caspase-8 and the necroptosis effector MLKL (mixed lineage kinase domain-like) prevented birinapant/IDN-6556-induced death, showing that inhibition of caspase-8 sensitizes AML cells to birinapant-induced necroptosis. However, loss of MLKL alone did not prevent a caspase-dependent birinapant/IDN-6556-induced death, implying that AML will be less likely to acquire resistance to this drug combination. A therapeutic breakthrough in AML has eluded researchers for decades. Demonstrated antileukemic efficacy and safety of the birinapant/emricasan combination in vivo suggest that induction of necroptosis warrants clinical investigation as a therapeutic opportunity in AML.


Assuntos
Caspase 8/metabolismo , Inibidores de Caspase/farmacologia , Dipeptídeos/farmacologia , Indóis/farmacologia , Ácidos Pentanoicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Leucemia Mieloide Aguda/metabolismo , Necrose/metabolismo , Células Tumorais Cultivadas
16.
Methods Mol Biol ; 1419: 265-76, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27108445

RESUMO

Ectopic expression of proteins involved in cell death pathways is an important tool to analyze their role during apoptosis or other forms of cell death. Lentiviral vectors offer the advantages of high rate of transduction and stable integration of donor DNA into the genome of the host cell, leading to reproducible and relevant readouts compared to classical overexpression by transfection of naked plasmid DNA.Here, we describe the production and application of lentiviral vectors to express cell death proteins in eukaryotic cells. A packaging cell line, usually HEK293T cells, is transfected with viral packaging plasmids and your gene of interest, which is flanked by long terminal repeat sites with an internal ribosome entry site in the 5'UTR (Un translated region). Virions are harvested from the supernatant and can be directly used to transduce target cells. Varied selection markers as well as a variety of promoters that regulate expression of the gene of interest make this system attractive for a wide range of application in many cell lines or in whole organisms.


Assuntos
Morte Celular/genética , Vetores Genéticos , Lentivirus/genética , Transdução Genética/métodos , Transfecção/métodos , Vírion/fisiologia , Células HEK293 , Humanos , Proteínas do Envelope Viral/metabolismo , Montagem de Vírus
17.
Cancer Cell ; 29(2): 145-58, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26859455

RESUMO

Birinapant is a smac-mimetic (SM) in clinical trials for treating cancer. SM antagonize inhibitor of apoptosis (IAP) proteins and simultaneously induce tumor necrosis factor (TNF) secretion to render cancers sensitive to TNF-induced killing. To enhance SM efficacy, we screened kinase inhibitors for their ability to increase TNF production of SM-treated cells. We showed that p38 inhibitors increased TNF induced by SM. Unexpectedly, even though p38 is required for Toll-like receptors to induce TNF, loss of p38 or its downstream kinase MK2 increased induction of TNF by SM. Hence, we show that the p38/MK2 axis can inhibit or promote TNF production, depending on the stimulus. Importantly, clinical p38 inhibitors overcame resistance of primary acute myeloid leukemia to birinapant.


Assuntos
Antineoplásicos/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Leucemia/tratamento farmacológico , Proteínas Mitocondriais/fisiologia , Mimetismo Molecular , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose , Humanos , Camundongos , Fator de Necrose Tumoral alfa/biossíntese
18.
J Leukoc Biol ; 96(1): 83-91, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24598054

RESUMO

Aberrant activation of ß-catenin is a common event in AML and is an independent predictor of poor prognosis. Although increased ß-catenin signaling in AML has been associated with oncogenic translocation products and activating mutations in the FLT3R, the mechanisms that activate ß-catenin in AML more broadly are still unclear. Here, we describe a novel link between IL-3 signaling and the regulation of ß-catenin in myeloid transformation and AML. In a murine model of HoxB8 and IL-3 cooperation, we show that ß-catenin protein levels are modulated by IL-3 and that Cre-induced deletion of ß-catenin abolishes IL-3-dependent growth and colony formation. In IL-3-dependent leukemic TF-1.8 cells, we observed increased ß-catenin protein levels and nuclear localization in response to IL-3, and this correlated with transcriptional induction of ß-catenin target genes. Furthermore, IL-3 promoted ß-catenin accumulation in a subset of AML patient samples, and gene-expression profiling of these cells revealed induction of WNT/ß-catenin and TCF4 gene signatures in an IL-3-dependent manner. This study is the first to link ß-catenin activation to IL-3 and suggests that targeting IL-3 signaling may be an effective approach for the inhibition of ß-catenin activity in some patients with AML.


Assuntos
Transformação Celular Neoplásica/metabolismo , Interleucina-3/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular Transformada , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação Leucêmica da Expressão Gênica/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Interleucina-3/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Fator de Transcrição 4 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta Catenina/genética
19.
Oncotarget ; 4(11): 1933-47, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24177192

RESUMO

Deregulated expression of Hox genes such as HoxA9 is associated with development of myeloproliferative disorders and leukemia and indicates a poor prognosis. To investigate the molecular mechanisms by which HoxA9 promotes immortalization of hematopoietic cells, we generated growth factor dependent myeloid cells in which HoxA9 expression is regulated by administration of 4-hydroxy-tamoxifen. Maintenance of HoxA9 overexpression is required for continued cell survival and proliferation, even in the presence of growth factors. We show for the first time that maintenance of Bcl-2 expression is critical for HoxA9-dependent immortalization and influences the latency of HoxA9-dependent leukemia. Hematopoietic cells lacking Bcl-2 were not immortalized by HoxA9 in vitro. Furthermore, deletion of Bcl-2 delayed the onset and reduced the severity of HoxA9/Meis1 and MLL-AF9 leukemias. This is the first description of a molecular link between HoxA9 and the regulation of Bcl-2 family members in acute myeloid leukemia.


Assuntos
Proteínas de Homeodomínio/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células Progenitoras Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Animais , Apoptose/fisiologia , Processos de Crescimento Celular/fisiologia , Sobrevivência Celular/fisiologia , Regulação Leucêmica da Expressão Gênica , Genes bcl-2 , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Interleucina-3/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Transgênicos , Células Mieloides/metabolismo , Células Mieloides/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia
20.
Genomics ; 102(1): 38-46, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23639479

RESUMO

Illumina Infinium Human Methylation (HM) BeadChips are widely used for measuring genome-scale DNA methylation, particularly in relation to epigenome-wide association studies (EWAS) studies. The methylation profile of human samples can be assessed accurately and reproducibly using the HM27 BeadChip (27,578 CpG sites) or its successor, the HM450 BeadChip (482,421 CpG sites). To date no mouse equivalent has been developed, greatly hindering the application of this methodology to the wide range of valuable murine models of disease and development currently in existence. We found 1308 and 13,715 probes from HM27 and HM450 BeadChip respectively, uniquely matched the bisulfite converted reference mouse genome (mm9). We demonstrate reproducible measurements of DNA methylation at these probes in a range of mouse tissue samples and in a murine cell line model of acute myeloid leukaemia. In the absence of a mouse counterpart, the Infinium Human Methylation BeadChip arrays have utility for methylation profiling in non-human species.


Assuntos
Ilhas de CpG/genética , Impressões Digitais de DNA , Metilação de DNA/genética , DNA/genética , Animais , Genoma Humano , Humanos , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA