Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Science ; 384(6697): 785-792, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38753784

RESUMO

In response to excessive DNA damage, human cells can activate p53 to induce apoptosis. Cells lacking p53 can still undergo apoptosis upon DNA damage, yet the responsible pathways are unknown. We observed that p53-independent apoptosis in response to DNA damage coincided with translation inhibition, which was characterized by ribosome stalling on rare leucine-encoding UUA codons and globally curtailed translation initiation. A genetic screen identified the transfer RNAse SLFN11 and the kinase GCN2 as factors required for UUA stalling and global translation inhibition, respectively. Stalled ribosomes activated a ribotoxic stress signal conveyed by the ribosome sensor ZAKα to the apoptosis machinery. These results provide an explanation for the frequent inactivation of SLFN11 in chemotherapy-unresponsive tumors and highlight ribosome stalling as a signaling event affecting cell fate in response to DNA damage.


Assuntos
Apoptose , Dano ao DNA , Biossíntese de Proteínas , Ribossomos , Proteína Supressora de Tumor p53 , Humanos , Linhagem Celular Tumoral , Códon/genética , Leucina/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ribossomos/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo
2.
Cancer Cell ; 41(10): 1817-1828.e9, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37683639

RESUMO

The dysregulated expression of immune checkpoint molecules enables cancer cells to evade immune destruction. While blockade of inhibitory immune checkpoints like PD-L1 forms the basis of current cancer immunotherapies, a deficiency in costimulatory signals can render these therapies futile. CD58, a costimulatory ligand, plays a crucial role in antitumor immune responses, but the mechanisms controlling its expression remain unclear. Using two systematic approaches, we reveal that CMTM6 positively regulates CD58 expression. Notably, CMTM6 interacts with both CD58 and PD-L1, maintaining the expression of these two immune checkpoint ligands with opposing functions. Functionally, the presence of CMTM6 and CD58 on tumor cells significantly affects T cell-tumor interactions and response to PD-L1-PD-1 blockade. Collectively, these findings provide fundamental insights into CD58 regulation, uncover a shared regulator of stimulatory and inhibitory immune checkpoints, and highlight the importance of tumor-intrinsic CMTM6 and CD58 expression in antitumor immune responses.


Assuntos
Antígeno B7-H1 , Proteínas com Domínio MARVEL , Proteínas da Mielina , Neoplasias , Linfócitos T , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Imunidade , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Linfócitos T/imunologia , Proteínas da Mielina/metabolismo , Proteínas com Domínio MARVEL/metabolismo
3.
Mol Oncol ; 17(7): 1192-1211, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37195379

RESUMO

Faithful and timely repair of DNA double-strand breaks (DSBs) is fundamental for the maintenance of genomic integrity. Here, we demonstrate that the meiotic recombination co-factor MND1 facilitates the repair of DSBs in somatic cells. We show that MND1 localizes to DSBs, where it stimulates DNA repair through homologous recombination (HR). Importantly, MND1 is not involved in the response to replication-associated DSBs, implying that it is dispensable for HR-mediated repair of one-ended DSBs. Instead, we find that MND1 specifically plays a role in the response to two-ended DSBs that are induced by irradiation (IR) or various chemotherapeutic drugs. Surprisingly, we find that MND1 is specifically active in G2 phase, whereas it only marginally affects repair during S phase. MND1 localization to DSBs is dependent on resection of the DNA ends and seemingly occurs through direct binding of MND1 to RAD51-coated ssDNA. Importantly, the lack of MND1-driven HR repair directly potentiates the toxicity of IR-induced damage, which could open new possibilities for therapeutic intervention, specifically in HR-proficient tumors.


Assuntos
Reparo do DNA , Recombinação Homóloga , Humanos , Reparo do DNA/genética , Recombinação Homóloga/genética , Quebras de DNA de Cadeia Dupla , Reparo de DNA por Recombinação , Fase S , Proteínas de Ciclo Celular/metabolismo
4.
Sci Adv ; 9(22): eadf4409, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37256941

RESUMO

DNA interstrand crosslinks (ICLs) pose a major obstacle for DNA replication and transcription if left unrepaired. The cellular response to ICLs requires the coordination of various DNA repair mechanisms. Homologous recombination (HR) intermediates generated in response to ICLs, require efficient and timely conversion by structure-selective endonucleases. Our knowledge on the precise coordination of this process remains incomplete. Here, we designed complementary genetic screens to map the machinery involved in the response to ICLs and identified FIRRM/C1orf112 as an indispensable factor in maintaining genome stability. FIRRM deficiency leads to hypersensitivity to ICL-inducing compounds, accumulation of DNA damage during S-G2 phase of the cell cycle, and chromosomal aberrations, and elicits a unique mutational signature previously observed in HR-deficient tumors. In addition, FIRRM is recruited to ICLs, controls MUS81 chromatin loading, and thereby affects resolution of HR intermediates. FIRRM deficiency in mice causes early embryonic lethality and accelerates tumor formation. Thus, FIRRM plays a critical role in the response to ICLs encountered during DNA replication.


Assuntos
Dano ao DNA , Reparo do DNA , Animais , Camundongos , Replicação do DNA , Recombinação Homóloga , DNA
5.
Nat Commun ; 13(1): 754, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136067

RESUMO

The genome consists of regions of transcriptionally active euchromatin and more silent heterochromatin. We reveal that the formation of heterochromatin domains requires cohesin turnover on DNA. Stabilization of cohesin on DNA through depletion of its release factor WAPL leads to a near-complete loss of heterochromatin domains. We observe the opposite phenotype in cells deficient for subunits of the Mediator-CDK module, with an almost binary partition of the genome into dense H3K9me3 domains, and regions devoid of H3K9me3 spanning the rest of the genome. We suggest that the Mediator-CDK module might contribute to gene expression by limiting the formation of dense heterochromatin domains. WAPL deficiency prevents the formation of heterochromatin domains, and allows for gene expression even in the absence of the Mediator-CDK subunit MED12. We propose that cohesin and Mediator affect heterochromatin in different ways to enable the correct distribution of epigenetic marks, and thus to ensure proper gene expression.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Complexo Mediador/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação , Epigênese Genética , Técnicas de Inativação de Genes , Humanos , Complexo Mediador/genética , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , RNA-Seq , Coesinas
6.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443154

RESUMO

The journey from plasma membrane to nuclear pore is a critical step in the lifecycle of DNA viruses, many of which must successfully deposit their genomes into the nucleus for replication. Viral capsids navigate this vast distance through the coordinated hijacking of a number of cellular host factors, many of which remain unknown. We performed a gene-trap screen in haploid cells to identify host factors for adenovirus (AdV), a DNA virus that can cause severe respiratory illness in immune-compromised individuals. This work identified Mindbomb 1 (MIB1), an E3 ubiquitin ligase involved in neurodevelopment, as critical for AdV infectivity. In the absence of MIB1, we observed that viral capsids successfully traffic to the proximity of the nucleus but ultimately fail to deposit their genomes within. The capacity of MIB1 to promote AdV infection was dependent on its ubiquitination activity, suggesting that MIB1 may mediate proteasomal degradation of one or more negative regulators of AdV infection. Employing complementary proteomic approaches to characterize proteins proximal to MIB1 upon AdV infection and differentially ubiquitinated in the presence or absence of MIB1, we observed an intersection between MIB1 and ribonucleoproteins (RNPs) largely unexplored in mammalian cells. This work uncovers yet another way that viruses utilize host cell machinery for their own replication, highlighting a potential target for therapeutic interventions that counter AdV infection.


Assuntos
Infecções por Adenoviridae/metabolismo , Adenoviridae/genética , Ubiquitina-Proteína Ligases/metabolismo , Células A549 , Infecções por Adenoviridae/genética , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Poro Nuclear/metabolismo , Ligação Proteica , Proteômica , Ribonucleoproteínas/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação , Vírion/metabolismo , Replicação Viral/fisiologia
7.
Immunity ; 54(1): 132-150.e9, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33271119

RESUMO

HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Linfócitos T CD8-Positivos/imunologia , Glioma/imunologia , Glicoesfingolipídeos/metabolismo , Glicosiltransferases/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoterapia/métodos , Apresentação de Antígeno , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/mortalidade , Glicoesfingolipídeos/imunologia , Antígenos HLA/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Ativação Linfocitária , Transdução de Sinais , Análise de Sobrevida , Evasão Tumoral
8.
Sci Signal ; 13(649)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934076

RESUMO

Forward genetic screens in mammalian cell lines, such as RNAi and CRISPR-Cas9 screens, have made major contributions to the elucidation of diverse signaling pathways. Here, we exploited human haploid cells as a robust comparative screening platform and report a set of quantitative forward genetic screens for identifying regulatory mechanisms of mTORC1 signaling, a key growth control pathway that senses diverse metabolic states. Selected chemical and genetic perturbations in this screening platform, including rapamycin treatment and genetic ablation of the Ragulator subunit LAMTOR4, revealed the known core mTORC1 regulatory signaling complexes and the intimate interplay of the mTORC1 pathway with lysosomal function, validating the approach. In addition, we identified a differential requirement for LAMTOR4 and LAMTOR5 in regulating the mTORC1 pathway under fed and starved conditions. Furthermore, we uncovered a previously unknown "synthetic-sick" interaction between the tumor suppressor folliculin and LAMTOR4, which may have therapeutic implications in cancer treatment. Together, our study demonstrates the use of iterative "perturb and observe" genetic screens to uncover regulatory mechanisms driving complex mammalian signaling networks.


Assuntos
Retroalimentação Fisiológica , Testes Genéticos/métodos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Haploidia , Células HeLa , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética
9.
J Virol ; 93(13)2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30996093

RESUMO

Vaccinia virus is a promising viral vaccine and gene delivery candidate and has historically been used as a model to study poxvirus-host cell interactions. We employed a genome-wide insertional mutagenesis approach in human haploid cells to identify host factors crucial for vaccinia virus infection. A library of mutagenized HAP1 cells was exposed to modified vaccinia virus Ankara (MVA). Deep-sequencing analysis of virus-resistant cells identified host factors involved in heparan sulfate synthesis, Golgi organization, and vesicular protein trafficking. We validated EXT1, TM9SF2, and TMED10 (TMP21/p23/p24δ) as important host factors for vaccinia virus infection. The critical roles of EXT1 in heparan sulfate synthesis and vaccinia virus infection were confirmed. TM9SF2 was validated as a player mediating heparan sulfate expression, explaining its contribution to vaccinia virus infection. In addition, TMED10 was found to be crucial for virus-induced plasma membrane blebbing and phosphatidylserine-induced macropinocytosis, presumably by regulating the cell surface expression of the TAM receptor Axl.IMPORTANCE Poxviruses are large DNA viruses that can infect a wide range of host species. A number of these viruses are clinically important to humans, including variola virus (smallpox) and vaccinia virus. Since the eradication of smallpox, zoonotic infections with monkeypox virus and cowpox virus are emerging. Additionally, poxviruses can be engineered to specifically target cancer cells and are used as a vaccine vector against tuberculosis, influenza, and coronaviruses. Poxviruses rely on host factors for most stages of their life cycle, including attachment to the cell and entry. These host factors are crucial for virus infectivity and host cell tropism. We used a genome-wide knockout library of host cells to identify host factors necessary for vaccinia virus infection. We confirm a dominant role for heparin sulfate in mediating virus attachment. Additionally, we show that TMED10, previously not implicated in virus infections, facilitates virus uptake by modulating the cellular response to phosphatidylserine.


Assuntos
Haploidia , Heparitina Sulfato/genética , Heparitina Sulfato/isolamento & purificação , Pinocitose/fisiologia , Vaccinia virus/genética , Vaccinia virus/metabolismo , Vacínia/virologia , Proteínas de Transporte Vesicular/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Vírus da Varíola Bovina/genética , Vírus de DNA , Técnicas de Inativação de Genes , Testes Genéticos , Complexo de Golgi , Células HEK293 , Células HeLa , Heparitina Sulfato/metabolismo , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Membrana , Monkeypox virus/genética , N-Acetilglucosaminiltransferases , Fosfatidilserinas/metabolismo , Poxviridae/genética , Ligação Viral
10.
Nat Med ; 25(4): 612-619, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833751

RESUMO

Cancer cells can evade immune surveillance through the expression of inhibitory ligands that bind their cognate receptors on immune effector cells. Expression of programmed death ligand 1 in tumor microenvironments is a major immune checkpoint for tumor-specific T cell responses as it binds to programmed cell death protein-1 on activated and dysfunctional T cells1. The activity of myeloid cells such as macrophages and neutrophils is likewise regulated by a balance between stimulatory and inhibitory signals. In particular, cell surface expression of the CD47 protein creates a 'don't eat me' signal on tumor cells by binding to SIRPα expressed on myeloid cells2-5. Using a haploid genetic screen, we here identify glutaminyl-peptide cyclotransferase-like protein (QPCTL) as a major component of the CD47-SIRPα checkpoint. Biochemical analysis demonstrates that QPCTL is critical for pyroglutamate formation on CD47 at the SIRPα binding site shortly after biosynthesis. Genetic and pharmacological interference with QPCTL activity enhances antibody-dependent cellular phagocytosis and cellular cytotoxicity of tumor cells. Furthermore, interference with QPCTL expression leads to a major increase in neutrophil-mediated killing of tumor cells in vivo. These data identify QPCTL as a novel target to interfere with the CD47 pathway and thereby augment antibody therapy of cancer.


Assuntos
Aminoaciltransferases/metabolismo , Antígenos de Diferenciação/metabolismo , Antígeno CD47/metabolismo , Imunoterapia , Neoplasias/imunologia , Neoplasias/terapia , Receptores Imunológicos/metabolismo , Aminoaciltransferases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Humanos , Camundongos Transgênicos , Neoplasias/patologia , Proteínas Opsonizantes/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo
11.
PLoS One ; 14(2): e0212053, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30753225

RESUMO

Experimental and clinical observations have highlighted the role of cytotoxic T cells in human tumor control. However, the parameters that control tumor cell sensitivity to T cell attack remain incompletely understood. To identify modulators of tumor cell sensitivity to T cell effector mechanisms, we performed a whole genome haploid screen in HAP1 cells. Selection of tumor cells by exposure to tumor-specific T cells identified components of the interferon-γ (IFN-γ) receptor (IFNGR) signaling pathway, and tumor cell killing by cytotoxic T cells was shown to be in large part mediated by the pro-apoptotic effects of IFN-γ. Notably, we identified schlafen 11 (SLFN11), a known modulator of DNA damage toxicity, as a regulator of tumor cell sensitivity to T cell-secreted IFN-γ. SLFN11 does not influence IFNGR signaling, but couples IFNGR signaling to the induction of the DNA damage response (DDR) in a context dependent fashion. In line with this role of SLFN11, loss of SLFN11 can reduce IFN-γ mediated toxicity. Collectively, our data indicate that SLFN11 can couple IFN-γ exposure of tumor cells to DDR and cellular apoptosis. Future work should reveal the mechanistic basis for the link between IFNGR signaling and DNA damage response, and identify tumor cell types in which SLFN11 contributes to the anti-tumor activity of T cells.


Assuntos
Apoptose/efeitos dos fármacos , Interferon gama/farmacologia , Proteínas Nucleares/metabolismo , Linfócitos T Citotóxicos/imunologia , Clorometilcetonas de Aminoácidos/farmacologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Quinolinas/farmacologia , Interferência de RNA , RNA Guia de Cinetoplastídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Linfócitos T Citotóxicos/metabolismo
12.
Nat Commun ; 10(1): 100, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30626869

RESUMO

Loss of BRCA2 affects genome stability and is deleterious for cellular survival. Using a genome-wide genetic screen in near-haploid KBM-7 cells, we show that tumor necrosis factor-alpha (TNFα) signaling is a determinant of cell survival upon BRCA2 inactivation. Specifically, inactivation of the TNF receptor (TNFR1) or its downstream effector SAM68 rescues cell death induced by BRCA2 inactivation. BRCA2 inactivation leads to pro-inflammatory cytokine production, including TNFα, and increases sensitivity to TNFα. Enhanced TNFα sensitivity is not restricted to BRCA2 inactivation, as BRCA1 or FANCD2 inactivation, or hydroxyurea treatment also sensitizes cells to TNFα. Mechanistically, BRCA2 inactivation leads to cGAS-positive micronuclei and results in a cell-intrinsic interferon response, as assessed by quantitative mass-spectrometry and gene expression profiling, and requires ASK1 and JNK signaling. Combined, our data reveals that micronuclei induced by loss of BRCA2 instigate a cGAS/STING-mediated interferon response, which encompasses re-wired TNFα signaling and enhances TNFα sensitivity.


Assuntos
Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Sobrevivência Celular/fisiologia , Inflamação/metabolismo , Nucleotidiltransferases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular , Deleção de Genes , Humanos , Nucleotidiltransferases/genética , Transdução de Sinais
13.
Science ; 362(6419): 1171-1177, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30442766

RESUMO

In genetic screens aimed at understanding drug resistance mechanisms in chronic myeloid leukemia cells, inactivation of the cullin 3 adapter protein-encoding leucine zipper-like transcription regulator 1 (LZTR1) gene led to enhanced mitogen-activated protein kinase (MAPK) pathway activity and reduced sensitivity to tyrosine kinase inhibitors. Knockdown of the Drosophila LZTR1 ortholog CG3711 resulted in a Ras-dependent gain-of-function phenotype. Endogenous human LZTR1 associates with the main RAS isoforms. Inactivation of LZTR1 led to decreased ubiquitination and enhanced plasma membrane localization of endogenous KRAS (V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog). We propose that LZTR1 acts as a conserved regulator of RAS ubiquitination and MAPK pathway activation. Because LZTR1 disease mutations failed to revert loss-of-function phenotypes, our findings provide a molecular rationale for LZTR1 involvement in a variety of inherited and acquired human disorders.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição/fisiologia , Ubiquitinação , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Drosophila melanogaster , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Mutação com Ganho de Função , Técnicas de Silenciamento de Genes , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/epidemiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação com Perda de Função , Sistema de Sinalização das MAP Quinases/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridazinas/farmacologia , Piridazinas/uso terapêutico , Transdução de Sinais , Fatores de Transcrição/genética , Ubiquitinação/genética
14.
Cancer Res ; 78(23): 6621-6631, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30213788

RESUMO

: Neuroblastoma is the second most common tumor in children. The cause of neuroblastoma is thought to lie in aberrant development of embryonic neural crest cells and is accompanied by low MHC-1 expression and suppression of the NF-κB transcription factor, thereby gearing cells toward escape from immunosurveillance. Here, we assess regulation of the MHC-1 gene in neuroblastoma to enhance its immunogenic potential for therapeutic T-cell targeting. A genome-wide CRISPR screen identified N4BP1 and TNIP1 as inhibitory factors of NF-κB-mediated MHC-1 expression in neuroblastoma. Patients with advanced stage neuroblastoma who expressed high levels of TNIP1 and N4BP1 exhibited worse overall survival. Depletion of N4BP1 or TNIP1 increased NF-κB and MHC-1 expression and stimulated recognition by antigen-specific CD8+ T cells. We confirmed that TNIP1 inhibited canonical NF-κB member RelA by preventing activation of the RelA/p50 NF-κB dimer. Furthermore, N4BP1 inhibited both canonical and noncanonical NF-κB through binding of deubiquitinating enzyme CEZANNE, resulting in stabilization of TRAF3 and degradation of NF-κB-inducing kinase NIK. These data suggest that N4BP1/CEZANNE or TNIP1 may be candidate targets for immunotherapy in neuroblastoma tumors and should lift NF-κB suppression, thereby triggering increased peptide/MHC1-mediated tumor reactivity to enhance therapeutic T-cell targeting. SIGNIFICANCE: Aberrant regulation of NF-κB and MHC-1 in neuroblastoma tumors provides new targets for immunotherapeutic approaches against neuroblastoma.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Neuroblastoma/imunologia , Neuroblastoma/metabolismo , Linhagem Celular Tumoral , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade Classe I/genética , Humanos , NF-kappa B/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Proteólise , RNA Interferente Pequeno/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo
15.
Mol Oncol ; 12(6): 953-971, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29689640

RESUMO

The absence of biomarkers to accurately predict anticancer therapy response remains a major obstacle in clinical oncology. We applied a genome-wide loss-of-function screening approach in human haploid cells to characterize genetic vulnerabilities to classical microtubule-targeting agents. Using docetaxel and vinorelbine, two well-established chemotherapeutic agents, we sought to identify genetic alterations sensitizing human HAP1 cells to these drugs. Despite the fact that both drugs act on microtubules, a set of distinct genes were identified whose disruption affects drug sensitivity. For docetaxel, this included a number of genes with a function in mitosis, while for vinorelbine we identified inactivation of FBXW7, RB1, and NF2, three frequently mutated tumor suppressor genes, as sensitizing factors. We validated these genes using independent knockout clones and confirmed FBXW7 as an important regulator of the mitotic spindle assembly. Upon FBXW7 depletion, vinorelbine treatment led to decreased survival of cells due to defective mitotic progression and subsequent mitotic catastrophe. We show that haploid insertional mutagenesis screens are a useful tool to study genetic vulnerabilities to classical chemotherapeutic drugs by identifying thus far unknown sensitivity factors. These results provide a rationale for investigating patient response to vinca alkaloid-based anticancer treatment in relation to the mutational status of these three tumor suppressor genes, and could in the future lead to the establishment of novel predictive biomarkers or suggest new drug combinations based on molecular mechanisms of drug sensitivity.


Assuntos
Testes Genéticos , Haploidia , Microtúbulos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proteína 7 com Repetições F-Box-WD/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Supressores de Tumor , Genoma Humano , Humanos , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Morfolinas/farmacologia , Mutagênese Insercional/genética , Mutação/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Purinas/farmacologia , Vinorelbina/farmacologia
16.
Cell Host Microbe ; 23(5): 636-643.e5, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29681460

RESUMO

Human type A Enteroviruses (EV-As) cause diseases ranging from hand-foot-and-mouth disease to poliomyelitis-like disease. Although cellular receptors are identified for some EV-As, they remain elusive for the majority of EV-As. We identify the cell surface molecule KREMEN1 as an entry receptor for coxsackievirus A10 (CV-A10). Whereas loss of KREMEN1 renders cells resistant to CV-A10 infection, KREMEN1 overexpression enhances CV-A10 binding to the cell surface and increases susceptibility to infection, indicating that KREMEN1 is a rate-limiting factor for CV-A10 infection. Furthermore, the extracellular domain of KREMEN1 binds CV-A10 and functions as a neutralizing agent during infection. Kremen-deficient mice are resistant to CV-A10-induced lethal paralysis, emphasizing the relevance of Kremen for infection in vivo. KREMEN1 is also essential for infection by a phylogenetic and pathogenic related group of EV-As. Collectively these findings highlight the importance of KREMEN1 for these emerging pathogens and its potential as an antiviral therapeutic target.


Assuntos
Enterovirus Humano A/metabolismo , Enterovirus Humano A/patogenicidade , Infecções por Enterovirus/metabolismo , Proteínas de Membrana/metabolismo , Internalização do Vírus , Animais , Antígenos de Superfície , Linhagem Celular , Linhagem Celular Tumoral , Enterovirus/patogenicidade , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/virologia , Feminino , Técnicas de Inativação de Genes , Células HCT116 , Células HEK293 , Doença de Mão, Pé e Boca/virologia , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Mutagênese , Filogenia , Domínios Proteicos
17.
Genome Med ; 9(1): 118, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29273094

RESUMO

BACKGROUND: The phenotypic severity of congenital muscular dystrophy-dystroglycanopathy (MDDG) syndromes associated with aberrant glycosylation of α-dystroglycan ranges from the severe Walker-Warburg syndrome or muscle-eye-brain disease to mild, late-onset, isolated limb-girdle muscular dystrophy without neural involvement. However, muscular dystrophy is invariably found across the spectrum of MDDG patients. METHODS: Using linkage mapping and whole-exome sequencing in two families with an unexplained neurodevelopmental disorder, we have identified homozygous and compound heterozygous mutations in B3GALNT2. RESULTS: The first family comprises two brothers of Dutch non-consanguineous parents presenting with mild ID and behavioral problems. Immunohistochemical analysis of muscle biopsy revealed no significant aberrations, in line with the absence of a muscular phenotype in the affected siblings. The second family includes five affected individuals from an Iranian consanguineous kindred with mild-to-moderate intellectual disability (ID) and epilepsy without any notable neuroimaging, muscle, or eye abnormalities. Complementation assays of the compound heterozygous mutations identified in the two brothers had a comparable effect on the O-glycosylation of α-dystroglycan as previously reported mutations that are associated with severe muscular phenotypes. CONCLUSIONS: In conclusion, we show that mutations in B3GALNT2 can give rise to a novel MDDG syndrome presentation, characterized by ID associated variably with seizure, but without any apparent muscular involvement. Importantly, B3GALNT2 activity does not fully correlate with the severity of the phenotype as assessed by the complementation assay.


Assuntos
Deficiência Intelectual/genética , Mutação , N-Acetilgalactosaminiltransferases/genética , Fenótipo , Síndrome de Walker-Warburg/genética , Adolescente , Adulto , Linhagem Celular , Criança , Feminino , Genes Recessivos , Genótipo , Humanos , Deficiência Intelectual/patologia , Masculino , N-Acetilgalactosaminiltransferases/metabolismo , Linhagem , Síndrome de Walker-Warburg/patologia
18.
Cell Host Microbe ; 22(5): 688-696.e5, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29120745

RESUMO

Arenaviruses cause fatal hemorrhagic disease in humans. Old World arenavirus glycoproteins (GPs) mainly engage α-dystroglycan as a cell-surface receptor, while New World arenaviruses hijack transferrin receptor. However, the Lujo virus (LUJV) GP does not cluster with New or Old World arenaviruses. Using a recombinant vesicular stomatitis virus containing LUJV GP as its sole attachment and fusion protein (VSV-LUJV), we demonstrate that infection is independent of known arenavirus receptor genes. A genome-wide haploid genetic screen identified the transmembrane protein neuropilin 2 (NRP2) and tetraspanin CD63 as factors for LUJV GP-mediated infection. LUJV GP binds the N-terminal domain of NRP2, while CD63 stimulates pH-activated LUJV GP-mediated membrane fusion. Overexpression of NRP2 or its N-terminal domain enhances VSV-LUJV infection, and cells lacking NRP2 are deficient in wild-type LUJV infection. These findings uncover this distinct set of host cell entry factors in LUJV infection and are attractive focus points for therapeutic intervention.


Assuntos
Lujo virus/fisiologia , Neuropilina-2/metabolismo , Tetraspanina 30/metabolismo , Proteínas Virais de Fusão/metabolismo , Proteínas Virais/metabolismo , Internalização do Vírus , Proteínas de Transporte , Linhagem Celular , Interações Hospedeiro-Patógeno/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Lujo virus/genética , Lujo virus/patogenicidade , Domínios e Motivos de Interação entre Proteínas , Receptores de Superfície Celular/metabolismo , Receptores da Transferrina , Proteínas Virais de Fusão/genética , Proteínas Virais/genética
19.
Cell Host Microbe ; 22(4): 460-470.e5, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29024641

RESUMO

Respiratory and arthropod-borne viral infections are a global threat due to the lack of effective antivirals and vaccines. A potential strategy is to target host proteins required for viruses but non-essential for the host. To identify such proteins, we performed a genome-wide knockout screen in human haploid cells and identified the calcium pump SPCA1. SPCA1 is required by viruses from the Paramyxoviridae, Flaviviridae, and Togaviridae families, including measles, dengue, West Nile, Zika, and chikungunya viruses. Calcium transport activity is required for SPCA1 to promote virus spread. SPCA1 regulates proteases within the trans-Golgi network that require calcium for their activity and are critical for virus glycoprotein maturation. Consistent with these findings, viral glycoproteins fail to mature in SPCA1-deficient cells preventing viral spread, which is evident even in cells with partial loss of SPCA1. Thus, SPCA1 is an attractive antiviral host target for a broad spectrum of established and emerging viral infections.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Cálcio/metabolismo , Flaviviridae/fisiologia , Interações Hospedeiro-Patógeno , Paramyxoviridae/fisiologia , Togaviridae/fisiologia , Proteínas Virais/metabolismo , Células A549 , Animais , ATPases Transportadoras de Cálcio/genética , Chlorocebus aethiops , Feminino , Técnicas de Inativação de Genes , Estudo de Associação Genômica Ampla , Haploidia , Células HeLa , Humanos , Masculino , Células Vero , Proteínas Virais/genética , Rede trans-Golgi/enzimologia
20.
Nature ; 549(7670): 106-110, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28813410

RESUMO

The clinical benefit for patients with diverse types of metastatic cancers that has been observed upon blockade of the interaction between PD-1 and PD-L1 has highlighted the importance of this inhibitory axis in the suppression of tumour-specific T-cell responses. Notwithstanding the key role of PD-L1 expression by cells within the tumour micro-environment, our understanding of the regulation of the PD-L1 protein is limited. Here we identify, using a haploid genetic screen, CMTM6, a type-3 transmembrane protein of previously unknown function, as a regulator of the PD-L1 protein. Interference with CMTM6 expression results in impaired PD-L1 protein expression in all human tumour cell types tested and in primary human dendritic cells. Furthermore, through both a haploid genetic modifier screen in CMTM6-deficient cells and genetic complementation experiments, we demonstrate that this function is shared by its closest family member, CMTM4, but not by any of the other CMTM members tested. Notably, CMTM6 increases the PD-L1 protein pool without affecting PD-L1 (also known as CD274) transcription levels. Rather, we demonstrate that CMTM6 is present at the cell surface, associates with the PD-L1 protein, reduces its ubiquitination and increases PD-L1 protein half-life. Consistent with its role in PD-L1 protein regulation, CMTM6 enhances the ability of PD-L1-expressing tumour cells to inhibit T cells. Collectively, our data reveal that PD-L1 relies on CMTM6/4 to efficiently carry out its inhibitory function, and suggest potential new avenues to block this pathway.


Assuntos
Antígeno B7-H1/metabolismo , Proteínas com Domínio MARVEL/metabolismo , Antígeno B7-H1/biossíntese , Antígeno B7-H1/química , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Teste de Complementação Genética , Haploidia , Humanos , Proteínas com Domínio MARVEL/genética , Melanoma/genética , Melanoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA