Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 41(20): 3275-3284, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37085455

RESUMO

Schmallenberg Virus (SBV), an arbovirus from the Peribunyaviridae family and Orthobunyavirus genus, was discovered in late 2011 in Germany and has been circulating in Europe, Asia and Africa ever since. The virus causes a disease associated with ruminants that includes fever, fetal malformation, drop in milk production, diarrhoea and stillbirths, becoming a burden for small and large farms. Building on previous studies on SBV nucleoprotein (SBV-N) as a promising vaccine candidate, we have investigated the possible protein regions responsible for protection. Based on selective truncation of domains designed from the available crystal structure of the SBV-N, we identified both the N-terminal domain (N-term; Met1 - Thr133) and a smaller fragment within (C4; Met1 - Ala58) as vaccine prototypes. Two injections of the N-term and C4 polypeptides protected mice knockout for type I interferon (IFN) receptors (IFNAR-/-) challenged with virulent SBV, opposite to control groups that presented severe signs of morbidity and weight loss. Viremia analyses along with the presence of IFN-γ secreted from splenocytes re-stimulated with the N-terminal region of the protein corroborate that these two portions of SBV-N can be employed as subunit vaccines. Apart from both proteinaceous fragments being easily produced in bacterial cells, the C4 polypeptide shares a high sequence homology (∼87.1 %) with the corresponding region of nucleoproteins of several viruses of the Simbu serogroup, a group of Orthobunyaviruses that comprises SBV and veterinary pathogens like Akabane virus and human infecting viruses like Oropouche. Thus, we propose that this smaller fragment is better suited for vaccine nanoparticle formulation, and it paves the way to further research with other related Orthobunyaviruses.


Assuntos
Infecções por Bunyaviridae , Doenças dos Bovinos , Orthobunyavirus , Vacinas , Humanos , Animais , Camundongos , Bovinos , Orthobunyavirus/genética , Infecções por Bunyaviridae/prevenção & controle , Infecções por Bunyaviridae/veterinária , Viremia/prevenção & controle , Nucleoproteínas/genética , Sorogrupo , Imunização , Ruminantes , Doenças dos Bovinos/prevenção & controle
2.
Mater Today Bio ; 13: 100191, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35024597

RESUMO

Inorganic materials can provide a set of tools to decontaminate solid, liquid or air containing viral particles. The use of disinfectants can be limited or not practical in scenarios where continuous cleaning is not feasible. Physicochemical differences between viruses raise the need for effective formulations for all kind of viruses. In the present work we describe two types of antimicrobial inorganic materials: i) a novel soda-lime glass (G3), and ii) kaolin containing metals nanoparticles (Ag or CuO), as materials to disable virus infectivity. Strong antiviral properties can be observed in G3 glass, and kaolin-containing nanoparticle materials showing a reduction of viral infectivity close to 99%. in the first 10 â€‹min of contact of vesicular stomatitis virus (VSV). A potent virucidal activity is also present in G3 and kaolin containing Ag or CuO nanoparticles against all kinds of viruses tested, reducing more than 99% the amount of HSV-1, Adenovirus, VSV, Influenza virus and SARS-CoV-2 exposed to them. Virucidal properties could be explained by a direct interaction of materials with viruses as well as inactivation by the presence of virucidal elements in the material lixiviates. Kaolin-based materials guarantee a controlled release of active nanoparticles with antiviral activity. Current coronavirus crisis highlights the need for new strategies to remove viruses from contaminated areas. We propose these low-cost inorganic materials as useful disinfecting antivirals in the actual or future pandemic threats.

3.
Sci Rep ; 12(1): 263, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997166

RESUMO

Cold Atmospheric Plasma (CAP) and Plasma Activated Media (PAM) are effective against bacteria, fungi, cancer cells, and viruses because they can deliver Reactive Oxygen and Nitrogen Species (RONS) on a living tissue with negligible damage on health cells. The antiviral activity of CAP against SARS-CoV-2 is being investigated, however, the same but of PAM has not been explored despite its potential. In the present study, the capability of Plasma Activated Media (PAM) to inactivate SARS-CoV-2 and PR8 H1N1 influenza virus with negligible damage on healthy cells is demonstrated. PAM acted by both virus detaching and diminished replication. Furthermore, the treatment of A549 lung cells at different times with buffered PAM did not induce interleukin 8 expression, showing that PAM did not induce inflammation. These results open a new research field by using PAM to the development novel treatments for COVID-19, influenza, and other respiratory diseases.


Assuntos
Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Gases em Plasma/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células A549 , Descoberta de Drogas , Humanos , Influenza Humana/tratamento farmacológico , Espécies Reativas de Nitrogênio/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Tratamento Farmacológico da COVID-19
4.
Sci Rep ; 11(1): 15293, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315976

RESUMO

The optical absorption coefficient of culture media is critical for the survival analysis of pathogens under optical irradiation. The quality of the results obtained from experiments relies on the optical analysis of the spatial distribution of fluence which also depends on the geometry of the sample. In this contribution, we consider both the geometrical shape and the culture medium's absorption coefficient to evaluate how the spatial distribution of optical radiation affects pathogens/viruses. In this work, we exposed SARS-CoV-2 to UV-C radiation ([Formula: see text] = 254 nm) and we calculated-considering the influence of the optical absorption of the culture medium-a characteristic inactivation fluence of [Formula: see text] = 4.7 J/m2, or an equivalent 10% survival (D90 dose) of 10.8 J/m2. Experimentally, we diluted the virus into sessile drops of Dulbecco's Modified Eagle Medium to evaluate pathogen activity after controlled doses of UV irradiation. To validate the optical absorption mode, we carried out an additional experiment where we varied droplet size. Our model-including optical absorption and geometrical considerations-provides robust results among a variety of experimental situations, and represents our experimental conditions more accurately. These results will help to evaluate the capability of UV disinfecting strategies applied to a variety of everyday situations, including the case of micro-droplets generated by respiratory functions.


Assuntos
Absorção de Radiação , Meios de Cultura , SARS-CoV-2/fisiologia , SARS-CoV-2/efeitos da radiação , Raios Ultravioleta , Inativação de Vírus/efeitos da radiação , Desinfecção
5.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250124

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a bunyavirus causing severe hemorrhagic fever disease in humans, with high mortality rates. The requirement of a high-containment laboratory and the lack of an animal model hampered the study of the immune response and protection of vaccine candidates. Using the recently developed interferon alpha receptor knockout (IFNAR-/-) mouse model, which replicates human disease, we investigated the immunogenicity and protection of two novel CCHFV vaccine candidates: a DNA vaccine encoding a ubiquitin-linked version of CCHFV Gc, Gn, and N and one using transcriptionally competent virus-like particles (tc-VLPs). In contrast to most studies that focus on neutralizing antibodies, we measured both humoral and cellular immune responses. We demonstrated a clear and 100% efficient preventive immunity against lethal CCHFV challenge with the DNA vaccine. Interestingly, there was no correlation with the neutralizing antibody titers alone, which were higher in the tc-VLP-vaccinated mice. However, the animals with a lower neutralizing titer, but a dominant cell-mediated Th1 response and a balanced Th2 response, resisted the CCHFV challenge. Moreover, we found that in challenged mice with a Th1 response (immunized by DNA/DNA and boosted by tc-VLPs), the immune response changed to Th2 at day 9 postchallenge. In addition, we were able to identify new linear B-cell epitope regions that are highly conserved between CCHFV strains. Altogether, our results suggest that a predominantly Th1-type immune response provides the most efficient protective immunity against CCHFV challenge. However, we cannot exclude the importance of the neutralizing antibodies as the surviving immunized mice exhibited substantial amounts of them.IMPORTANCE Crimean-Congo hemorrhagic fever virus (CCHFV) is responsible for hemorrhagic diseases in humans, with a high mortality rate. There is no FDA-approved vaccine, and there are still gaps in our knowledge of the immune responses to infection. The recently developed mouse models mimic human CCHF disease and are useful to study the immunogenicity and the protection by vaccine candidates. Our study shows that mice vaccinated with a specific DNA vaccine were fully protected. Importantly, we show that neutralizing antibodies are not sufficient for protection against CCHFV challenge but that an extra Th1-specific cellular response is required. Moreover, we describe the identification of five conserved B-cell epitopes, of which only one was previously known, that could be of great importance for the development of diagnostics tools and the improvement of vaccine candidates.


Assuntos
Proteínas do Capsídeo/imunologia , Febre Hemorrágica da Crimeia/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Plasmídeos/genética , Vacinas de DNA/imunologia , Vacinas de Partículas Semelhantes a Vírus/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Neutralizantes/sangue , Proteínas do Capsídeo/genética , Modelos Animais de Doenças , Epitopos de Linfócito B/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/química , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia/virologia , Humanos , Imunidade Celular , Imunização , Imunogenicidade da Vacina , Interferon-alfa/deficiência , Interferon-alfa/genética , Camundongos , Camundongos Knockout , Plasmídeos/administração & dosagem , Células Th1 , Células Th2 , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Proteínas do Envelope Viral/genética
6.
Antiviral Res ; 142: 55-62, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28322923

RESUMO

Bluetongue virus (BTV) is the causative agent of bluetongue disease (BT), which affects domestic and wild ruminants. At the present, 27 different serotypes have been documented. Vaccination has been demonstrated as one of the most effective methods to avoid viral dissemination. To overcome the drawbacks associated with the use of inactivated and attenuated vaccines we engineered a new recombinant BTV vaccine candidate based on proteins VP2, VP7, and NS1 of BTV-4 that were incorporated into avian reovirus muNS-Mi microspheres (MS-VP2/VP7/NS1) and recombinant modified vaccinia virus Ankara (rMVA). The combination of these two antigen delivery systems in a heterologous prime-boost vaccination strategy generated significant levels of neutralizing antibodies in IFNAR(-/-) mice. Furthermore, this immunization strategy increased the ratio of IgG2a/IgG1 in sera, indicating an induction of a Th1 response, and elicited a CD8 T cell response. Immunized mice were protected against lethal challenges with the homologous serotype 4 and the heterologous serotype 1 of BTV. All these results support the strategy based on microspheres in combination with rMVAs as a promising multiserotype vaccine candidate against BTV.


Assuntos
Vírus Bluetongue/imunologia , Bluetongue/prevenção & controle , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Microesferas , Receptor de Interferon alfa e beta/imunologia , Vacinação , Vaccinia virus/imunologia , Animais , Anticorpos Neutralizantes , Vírus Bluetongue/classificação , Linfócitos T CD8-Positivos/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Linhagem Celular , Chlorocebus aethiops , Imunização , Imunização Secundária/métodos , Imunoglobulina G/sangue , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Orthoreovirus Aviário/genética , Orthoreovirus Aviário/imunologia , Sorogrupo , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas Sintéticas/imunologia , Células Vero , Proteínas do Core Viral/genética , Proteínas do Core Viral/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia
7.
Int J Biol Sci ; 12(12): 1448-1460, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27994510

RESUMO

Bluetongue virus (BTV) replicates in lymphoid tissues where infected mononuclear leukocytes secrete proinflammatory and vasoactive mediators that can contribute to bluetongue (BT) pathogenesis. Using the well-characterized IFNAR(-/-) mice animal model, we have now studied the histopathology and dynamics of leukocyte populations in different target tissues (spleen, thymus, and lung) during BTV-4 infection by histological and immunohistochemical techniques. The spleen and thymus of BTV-4 infected mice showed severe lymphoid depletion on H&E stained sections. This finding was confirmed by IHC, showing moderate decreased immunopositivity against CD3 in the thymus, and scarce immunoreactivity against CD3 and CD79 in the rest of the white pulp in the spleen, together with an increase in MAC387 immunostaining. BTV-4 infection also induced the expression of active caspase-3 in the spleen, where apoptotic debris was observed by H&E. A dramatic increase in iNOS immunoreactivity associated to necrotic areas of the white pulp was observed, being less noticeable in the thymus and the lung. The induction of pro-inflammatory cytokines in tissues where BTV replicates was evaluated by measuring transcript levels by RT-qPCR. BTV-4 infection led to enhance transcription of IFN-γ, TNF, IL-6, IL-12-p40, and IL-1ß mRNA in the thymus, spleen and lung, correlating with the level of virus replication in these tissues. Disease progression and pathogenesis in IFNAR(-/-) mice closely mimics hallmarks of bluetongue disease in ruminants. IFNAR(-/-) mice are a good choice to facilitate a faster advance in the field of orbiviruses.


Assuntos
Vírus Bluetongue/patogenicidade , Bluetongue/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Animais , Bluetongue/genética , Bluetongue/virologia , Imuno-Histoquímica , Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Leucócitos/metabolismo , Masculino , Camundongos , Receptor de Interferon alfa e beta/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sorogrupo , Fator de Necrose Tumoral alfa/metabolismo
8.
Sci Rep ; 6: 20617, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26847478

RESUMO

Rift Valley Fever virus (RVFV) causes recurrent outbreaks of acute life-threatening human and livestock illness in Africa and the Arabian Peninsula. No licensed vaccines are currently available for humans and those widely used in livestock have major safety concerns. A 'One Health' vaccine development approach, in which the same vaccine is co-developed for multiple susceptible species, is an attractive strategy for RVFV. Here, we utilized a replication-deficient chimpanzee adenovirus vaccine platform with an established human and livestock safety profile, ChAdOx1, to develop a vaccine for use against RVFV in both livestock and humans. We show that single-dose immunization with ChAdOx1-GnGc vaccine, encoding RVFV envelope glycoproteins, elicits high-titre RVFV-neutralizing antibody and provides solid protection against RVFV challenge in the most susceptible natural target species of the virus-sheep, goats and cattle. In addition we demonstrate induction of RVFV-neutralizing antibody by ChAdOx1-GnGc vaccination in dromedary camels, further illustrating the potency of replication-deficient chimpanzee adenovirus vaccine platforms. Thus, ChAdOx1-GnGc warrants evaluation in human clinical trials and could potentially address the unmet human and livestock vaccine needs.


Assuntos
Vacinas contra Adenovirus/administração & dosagem , Anticorpos Neutralizantes/metabolismo , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/metabolismo , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas contra Adenovirus/farmacologia , Animais , Camelus , Bovinos , Cabras , Humanos , Pan troglodytes/imunologia , Pan troglodytes/virologia , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/imunologia , Arábia Saudita/epidemiologia , Ovinos , Reino Unido/epidemiologia , Vacinação , Vacinas Sintéticas/administração & dosagem , Proteínas do Envelope Viral/imunologia
9.
Arch Virol ; 159(3): 535-46, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24100475

RESUMO

Rift Valley fever virus (RVFV) is a vector-borne virus that causes high neonatal mortality in livestock and deadly haemorrhagic fever in humans. In this paper, we describe the generation of monoclonal antibodies (mabs) against all three structural proteins of RVFV (glycoproteins Gn and Gc and nucleocapsid protein NP). After immunization of BALB/c mice with individual recombinant proteins, a total of 45 clones secreting ELISA-reactive monoclonal antibodies against NP, Gn and Gc epitopes were obtained. Twelve clones were directed to NP, 28 to Gn, and 5 to Gc. Western blot analysis revealed that most of the mabs were reactive to linearized epitopes on recombinant as well as native virus proteins. Six mabs against NP, 21 against Gn and all mabs against Gc also detected conformational epitopes, as shown by indirect immunofluorescence on RVFV-infected cells. All of the mabs were evaluated for their use in a competition enzyme-linked immunosorbent assay (ELISA) for the detection of a RVFV infection. Several mabs were identified that competed with polyclonal rabbit serum, and one of them - mab Gn123, raised against Gn protein - was selected for a proof-of-principle study with field sera from a recent Rift Valley fever outbreak. The novel Gn-based competition ELISA demonstrated high performance, offering a promising alternative and addition to serological assays based on nucleocapsid protein.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais/sangue , Febre do Vale de Rift/diagnóstico , Vírus da Febre do Vale do Rift/imunologia , Proteínas Estruturais Virais/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Antivirais/isolamento & purificação , Antígenos Virais/genética , Antígenos Virais/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vírus da Febre do Vale do Rift/genética , Testes Sorológicos/métodos , Proteínas Estruturais Virais/genética
10.
Virol J ; 10: 349, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24304565

RESUMO

BACKGROUND: Rift Valley Fever (RVF) is a viral zoonosis that historically affects livestock production and human health in sub-Saharan Africa, though epizootics have also occurred in the Arabian Peninsula. Whilst an effective live-attenuated vaccine is available for livestock, there is currently no licensed human RVF vaccine. Replication-deficient chimpanzee adenovirus (ChAd) vectors are an ideal platform for development of a human RVF vaccine, given the low prevalence of neutralizing antibodies against them in the human population, and their excellent safety and immunogenicity profile in human clinical trials of vaccines against a wide range of pathogens. METHODS: Here, in BALB/c mice, we evaluated the immunogenicity and efficacy of a replication-deficient chimpanzee adenovirus vector, ChAdOx1, encoding the RVF virus envelope glycoproteins, Gn and Gc, which are targets of virus neutralizing antibodies. The ChAdOx1-GnGc vaccine was assessed in comparison to a replication-deficient human adenovirus type 5 vector encoding Gn and Gc (HAdV5-GnGc), a strategy previously shown to confer protective immunity against RVF in mice. RESULTS: A single immunization with either of the vaccines conferred protection against RVF virus challenge eight weeks post-immunization. Both vaccines elicited RVF virus neutralizing antibody and a robust CD8+ T cell response. CONCLUSIONS: Together the results support further development of RVF vaccines based on replication-deficient adenovirus vectors, with ChAdOx1-GnGc being a potential candidate for use in future human clinical trials.


Assuntos
Adenoviridae/genética , Portadores de Fármacos , Vetores Genéticos , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linfócitos T CD8-Positivos/imunologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/genética , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
11.
J Virol Methods ; 183(2): 99-105, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22449758

RESUMO

A multiplex bead-based suspension array was developed that can be used for the simultaneous detection of antibodies against the surface glycoprotein Gn and the nucleocapsid protein N of Rift Valley fever virus (RVFV) in various animal species. The N protein and the purified ectodomain of the Gn protein were covalently linked to paramagnetic Luminex beads. The performance of the resulting multiplex immunoassay was evaluated by testing a comprehensive and well-characterized panel of sera from sheep, cattle and humans. The suitability of this multiplex immunoassay to differentiate infected from vaccinated animals (DIVA) was investigated by testing sera from lambs vaccinated with a paramyxovirus vaccine vector expressing the RVFV surface glycoproteins Gn and Gc. The results suggest that the bead-based suspension array can be used as a DIVA assay to accompany several recently developed experimental vaccines that are based on RVFV glycoproteins, and are devoid of the N protein.


Assuntos
Anticorpos Antivirais/sangue , Proteínas do Nucleocapsídeo/imunologia , Febre do Vale de Rift/veterinária , Doenças dos Ovinos/prevenção & controle , Proteínas do Envelope Viral/imunologia , Animais , Antígenos/química , Bovinos , Vetores Genéticos , Humanos , Proteínas Imobilizadas/química , Imunoglobulina G/sangue , Técnicas de Imunoadsorção , Proteínas do Nucleocapsídeo/genética , Paramyxoviridae/genética , Paramyxoviridae/imunologia , Estrutura Terciária de Proteína , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Ovinos , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/virologia , Proteínas do Envelope Viral/genética , Vacinas Virais/genética , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA