Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Drug Deliv Rev ; 160: 115-135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33039497

RESUMO

The advent of immunotherapy has revolutionised the treatment of some cancers. Harnessing the immune system to improve tumour cell killing is now standard clinical practice and immunotherapy is the first line of defence for many cancers that historically, were difficult to treat. A unifying concept in cancer immunotherapy is the activation of the immune system to mount an attack on malignant cells, allowing the body to recognise, and in some cases, eliminate cancer. However, in spite of a significant proportion of patients that respond well to treatment, there remains a subset who are non-responders and a number of cancers that cannot be treated with these therapies. These limitations highlight the need for targeted delivery of immunomodulators to both tumours and the effector cells of the immune system, the latter being highly concentrated in the lymphatic system. In this context, macromolecular therapies may provide a significant advantage. Macromolecules are too large to easily access blood capillaries and instead typically exhibit preferential uptake via the lymphatic system. In contexts where immune cells are the therapeutic target, particularly in cancer therapy, this may be advantageous. In this review, we examine in brief the current immunotherapy approaches in cancer and how macromolecular and nanomedicine strategies may improve the therapeutic profiles of these drugs. We subsequently discuss how therapeutics directed either by parenteral or mucosal administration, can be taken up by the lymphatics thereby accessing a larger proportion of the body's immune cells. Finally, we detail drug delivery strategies that have been successfully employed to target the lymphatics.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Imunoterapia/métodos , Sistema Linfático/metabolismo , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/uso terapêutico , Transporte Biológico/fisiologia , Vias de Administração de Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas
2.
J Control Release ; 315: 85-96, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31655131

RESUMO

Interstitial, e.g. subcutaneous (SC) or intradermal (ID), administration of monoclonal antibodies (mAb) is less invasive than intravenous administration and leads to mAb uptake into both lymphatic and blood capillaries draining the injection site. Interstitial administration, however, is hindered by the presence of hyaluronan (HA), a glycosaminoglycan that is a major fluid barrier in the interstitial space. The transient removal of HA with recombinant human hyaluronidase (rHuPH20) helps facilitate the interstitial administration of often high therapeutic doses of mAb in the clinic. rHuPH20's impact on the systemic pharmacokinetics of several mAbs has been previously described, however effects on route of absorption (lymph vs blood) are unknown. The current study has therefore explored the lymphatic transport and bioavailability of cetuximab and trastuzumab after SC and ID coadministration in the presence and absence of rHuPH20 in rats. After SC administration cetuximab absolute bioavailability increased from 67 % to 80 % in the presence of rHuPH20. Cetuximab recovery in the lymphatics also increased after SC (35.8 % to 49.4 %) and ID (26.7 % to 58.8 %) administration in the presence of rHuPH20. When the injection volume (and therefore dose) was increased 10-fold in the presence of rHuPH20 cetuximab plasma exposure increased approximately linearly (12- and 8.9-fold respectively after SC and ID administration), although the proportional contribution of cetuximab lymphatic transport reduced slightly (6.2-fold increase for both administration routes). In contrast, co-administration with rHuPH20 did not lead to increases in plasma exposure for trastuzumab after SC or ID administration, most likely reflecting the fact that the reported absolute bioavailability of trastuzumab (in the absence of rHuPH20) is high (∼77-99 %). However, lymphatic transport of trastuzumab did increase when coadministered ID with rHuPH20 in spite of the lack of change to overall bioavailability. The data suggest that co-administration with rHuPH20 is able to increase the volume of mAb that can be administered interstitially, and in some instances can increase the amount absorbed into both the blood and the lymph. In the current studies the ability of rHuPH20 to enhance interstitial bioavailability was higher for cetuximab where intrinsic interstitial bioavailability was low, when compared to trastuzumab where interstitial bioavailability was high.


Assuntos
Cetuximab/farmacocinética , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/farmacologia , Trastuzumab/farmacocinética , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/farmacocinética , Disponibilidade Biológica , Cetuximab/administração & dosagem , Feminino , Humanos , Hialuronoglucosaminidase/administração & dosagem , Injeções Intradérmicas , Injeções Subcutâneas , Linfa/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Trastuzumab/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA