Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Environ Res ; 252(Pt 3): 118942, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649012

RESUMO

Despite the known link between air pollution and cause-specific mortality, its relation to chronic kidney disease (CKD)-associated mortality is understudied. Therefore, we investigated the association between long-term exposure to air pollution and CKD-related mortality in a large multicentre population-based European cohort. Cohort data were linked to local mortality registry data. CKD-death was defined as ICD10 codes N18-N19 or corresponding ICD9 codes. Mean annual exposure at participant's home address was determined with fine spatial resolution exposure models for nitrogen dioxide (NO2), black carbon (BC), ozone (O3), particulate matter ≤2.5 µm (PM2.5) and several elemental constituents of PM2.5. Cox regression models were adjusted for age, sex, cohort, calendar year of recruitment, smoking status, marital status, employment status and neighbourhood mean income. Over a mean follow-up time of 20.4 years, 313 of 289,564 persons died from CKD. Associations were positive for PM2.5 (hazard ratio (HR) with 95% confidence interval (CI) of 1.31 (1.03-1.66) per 5 µg/m3, BC (1.26 (1.03-1.53) per 0.5 × 10- 5/m), NO2 (1.13 (0.93-1.38) per 10 µg/m3) and inverse for O3 (0.71 (0.54-0.93) per 10 µg/m3). Results were robust to further covariate adjustment. Exclusion of the largest sub-cohort contributing 226 cases, led to null associations. Among the elemental constituents, Cu, Fe, K, Ni, S and Zn, representing different sources including traffic, biomass and oil burning and secondary pollutants, were associated with CKD-related mortality. In conclusion, our results suggest an association between air pollution from different sources and CKD-related mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Exposição Ambiental , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/mortalidade , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/induzido quimicamente , Masculino , Feminino , Europa (Continente)/epidemiologia , Pessoa de Meia-Idade , Idoso , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/efeitos adversos , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Material Particulado/análise , Material Particulado/efeitos adversos , Adulto
2.
Int J Cancer ; 154(11): 1900-1910, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339851

RESUMO

Air pollution has been shown to significantly impact human health including cancer. Gastric and upper aerodigestive tract (UADT) cancers are common and increased risk has been associated with smoking and occupational exposures. However, the association with air pollution remains unclear. We pooled European subcohorts (N = 287,576 participants for gastric and N = 297,406 for UADT analyses) and investigated the association between residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone in the warm season (O3w) with gastric and UADT cancer. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. During 5,305,133 and 5,434,843 person-years, 872 gastric and 1139 UADT incident cancer cases were observed, respectively. For gastric cancer, we found no association with PM2.5, NO2 and BC while for UADT the hazard ratios (95% confidence interval) were 1.15 (95% CI: 1.00-1.33) per 5 µg/m3 increase in PM2.5, 1.19 (1.08-1.30) per 10 µg/m3 increase in NO2, 1.14 (1.04-1.26) per 0.5 × 10-5 m-1 increase in BC and 0.81 (0.72-0.92) per 10 µg/m3 increase in O3w. We found no association between long-term ambient air pollution exposure and incidence of gastric cancer, while for long-term exposure to PM2.5, NO2 and BC increased incidence of UADT cancer was observed.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Gástricas , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Dióxido de Nitrogênio/efeitos adversos , Neoplasias Gástricas/epidemiologia , Neoplasias Gástricas/etiologia , Incidência , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise
3.
Environ Pollut ; 343: 123097, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38065336

RESUMO

Leukemia and lymphoma are the two most common forms of hematologic malignancy, and their etiology is largely unknown. Pathophysiological mechanisms suggest a possible association with air pollution, but little empirical evidence is available. We aimed to investigate the association between long-term residential exposure to outdoor air pollution and risk of leukemia and lymphoma. We pooled data from four cohorts from three European countries as part of the "Effects of Low-level Air Pollution: a Study in Europe" (ELAPSE) collaboration. We used Europe-wide land use regression models to assess annual mean concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) at residences. We also estimated concentrations of PM2.5 elemental components: copper (Cu), iron (Fe), zinc (Zn); sulfur (S); nickel (Ni), vanadium (V), silicon (Si) and potassium (K). We applied Cox proportional hazards models to investigate the associations. Among the study population of 247,436 individuals, 760 leukemia and 1122 lymphoma cases were diagnosed during 4,656,140 person-years of follow-up. The results showed a leukemia hazard ratio (HR) of 1.13 (95% confidence intervals [CI]: 1.01-1.26) per 10 µg/m3 NO2, which was robust in two-pollutant models and consistent across the four cohorts and according to smoking status. Sex-specific analyses suggested that this association was confined to the male population. Further, the results showed increased lymphoma HRs for PM2.5 (HR = 1.16; 95% CI: 1.02-1.34) and potassium content of PM2.5, which were consistent in two-pollutant models and according to sex. Our results suggest that air pollution at the residence may be associated with adult leukemia and lymphoma.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Leucemia , Linfoma , Adulto , Feminino , Humanos , Masculino , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/análise , Poluentes Ambientais/análise , Leucemia/induzido quimicamente , Leucemia/epidemiologia , Linfoma/induzido quimicamente , Linfoma/epidemiologia , Potássio/análise , Poluentes Atmosféricos/análise
4.
Sci Total Environ ; 912: 168789, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37996018

RESUMO

It is unclear whether cancers of the upper aerodigestive tract (UADT) and gastric cancer are related to air pollution, due to few studies with inconsistent results. The effects of particulate matter (PM) may vary across locations due to different source contributions and related PM compositions, and it is not clear which PM constituents/sources are most relevant from a consideration of overall mass concentration alone. We therefore investigated the association of UADT and gastric cancers with PM2.5 elemental constituents and sources components indicative of different sources within a large multicentre population based epidemiological study. Cohorts with at least 10 cases per cohort led to ten and eight cohorts from five countries contributing to UADT- and gastric cancer analysis, respectively. Outcome ascertainment was based on cancer registry data or data of comparable quality. We assigned home address exposure to eight elemental constituents (Cu, Fe, K, Ni, S, Si, V and Zn) estimated from Europe-wide exposure models, and five source components identified by absolute principal component analysis (APCA). Cox regression models were run with age as time scale, stratified for sex and cohort and adjusted for relevant individual and neighbourhood level confounders. We observed 1139 UADT and 872 gastric cancer cases during a mean follow-up of 18.3 and 18.5 years, respectively. UADT cancer incidence was associated with all constituents except K in single element analyses. After adjustment for NO2, only Ni and V remained associated with UADT. Residual oil combustion and traffic source components were associated with UADT cancer persisting in the multiple source model. No associations were found for any of the elements or source components and gastric cancer incidence. Our results indicate an association of several PM constituents indicative of different sources with UADT but not gastric cancer incidence with the most robust evidence for traffic and residual oil combustion.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Gástricas , Humanos , Material Particulado/análise , Neoplasias Gástricas/induzido quimicamente , Neoplasias Gástricas/epidemiologia , Incidência , Exposição Ambiental/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análise
5.
Environ Health Perspect ; 131(12): 127003, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38039140

RESUMO

BACKGROUND: Studies across the globe generally reported increased mortality risks associated with particulate matter with aerodynamic diameter ≤2.5µm (PM2.5) exposure with large heterogeneity in the magnitude of reported associations and the shape of concentration-response functions (CRFs). We aimed to evaluate the impact of key study design factors (including confounders, applied exposure model, population age, and outcome definition) on PM2.5 effect estimates by harmonizing analyses on three previously published large studies in Canada [Mortality-Air Pollution Associations in Low Exposure Environments (MAPLE), 1991-2016], the United States (Medicare, 2000-2016), and Europe [Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE), 2000-2016] as much as possible. METHODS: We harmonized the study populations to individuals 65+ years of age, applied the same satellite-derived PM2.5 exposure estimates, and selected the same sets of potential confounders and the same outcome. We evaluated whether differences in previously published effect estimates across cohorts were reduced after harmonization among these factors. Additional analyses were conducted to assess the influence of key design features on estimated risks, including adjusted covariates and exposure assessment method. A combined CRF was assessed with meta-analysis based on the extended shape-constrained health impact function (eSCHIF). RESULTS: More than 81 million participants were included, contributing 692 million person-years of follow-up. Hazard ratios and 95% confidence intervals (CIs) for all-cause mortality associated with a 5-µg/m3 increase in PM2.5 were 1.039 (1.032, 1.046) in MAPLE, 1.025 (1.021, 1.029) in Medicare, and 1.041 (1.014, 1.069) in ELAPSE. Applying a harmonized analytical approach marginally reduced difference in the observed associations across the three studies. Magnitude of the association was affected by the adjusted covariates, exposure assessment methodology, age of the population, and marginally by outcome definition. Shape of the CRFs differed across cohorts but generally showed associations down to the lowest observed PM2.5 levels. A common CRF suggested a monotonically increased risk down to the lowest exposure level. https://doi.org/10.1289/EHP12141.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Idoso , Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Programas Nacionais de Saúde , Poluição do Ar/análise , Material Particulado/análise , Europa (Continente)/epidemiologia , Estudos de Coortes , Canadá/epidemiologia
6.
Environ Res ; 239(Pt 1): 117230, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37806476

RESUMO

BACKGROUND: Air pollution is a growing concern worldwide, with significant impacts on human health. Multiple myeloma is a type of blood cancer with increasing incidence. Studies have linked air pollution exposure to various types of cancer, including leukemia and lymphoma, however, the relationship with multiple myeloma incidence has not been extensively investigated. METHODS: We pooled four European cohorts (N = 234,803) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), and ozone (O3) and multiple myeloma. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: During 4,415,817 person-years of follow-up (average 18.8 years), we observed 404 cases of multiple myeloma. The results of the fully adjusted linear analyses showed hazard ratios (95% confidence interval) of 0.99 (0.84, 1.16) per 10 µg/m³ NO2, 1.04 (0.82, 1.33) per 5 µg/m³ PM2.5, 0.99 (0.84, 1.18) per 0.5 10-5 m-1 BCE, and 1.11 (0.87, 1.41) per 10 µg/m³ O3. CONCLUSIONS: We did not observe an association between long-term ambient air pollution exposure and incidence of multiple myeloma.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Mieloma Múltiplo , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos de Coortes , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Mieloma Múltiplo/induzido quimicamente , Mieloma Múltiplo/epidemiologia , Dióxido de Nitrogênio/toxicidade , Dióxido de Nitrogênio/análise , Material Particulado/análise
7.
Br J Cancer ; 129(4): 656-664, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37420001

RESUMO

BACKGROUND: Risk factors for malignant tumours of the central nervous system (CNS) are largely unknown. METHODS: We pooled six European cohorts (N = 302,493) and assessed the association between residential exposure to nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) and malignant intracranial CNS tumours defined according to the International Classification of Diseases ICD-9/ICD-10 codes 192.1/C70.0, 191.0-191.9/C71.0-C71.9, 192.0/C72.2-C72.5. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: During 5,497,514 person-years of follow-up (average 18.2 years), we observed 623 malignant CNS tumours. The results of the fully adjusted linear analyses showed a hazard ratio (95% confidence interval) of 1.07 (0.95, 1.21) per 10 µg/m³ NO2, 1.17 (0.96, 1.41) per 5 µg/m³ PM2.5, 1.10 (0.97, 1.25) per 0.5 10-5m-1 BC, and 0.99 (0.84, 1.17) per 10 µg/m³ O3. CONCLUSIONS: We observed indications of an association between exposure to NO2, PM2.5, and BC and tumours of the CNS. The PM elements were not consistently associated with CNS tumour incidence.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Encefálicas , Ozônio , Humanos , Material Particulado/efeitos adversos , Dióxido de Nitrogênio , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/etiologia , Poluentes Atmosféricos/efeitos adversos
8.
Eur Respir J ; 62(1)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37343976

RESUMO

BACKGROUND: Early ecological studies have suggested links between air pollution and risk of coronavirus disease 2019 (COVID-19), but evidence from individual-level cohort studies is still sparse. We examined whether long-term exposure to air pollution is associated with risk of COVID-19 and who is most susceptible. METHODS: We followed 3 721 810 Danish residents aged ≥30 years on 1 March 2020 in the National COVID-19 Surveillance System until the date of first positive test (incidence), COVID-19 hospitalisation or death until 26 April 2021. We estimated residential annual mean particulate matter with diameter ≤2.5 µm (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) in 2019 by the Danish DEHM/UBM model, and used Cox proportional hazards regression models to estimate the associations of air pollutants with COVID-19 outcomes, adjusting for age, sex, individual- and area-level socioeconomic status, and population density. RESULTS: 138 742 individuals were infected, 11 270 were hospitalised and 2557 died from COVID-19 during 14 months. We detected associations of PM2.5 (per 0.53 µg·m-3) and NO2 (per 3.59 µg·m-3) with COVID-19 incidence (hazard ratio (HR) 1.10 (95% CI 1.05-1.14) and HR 1.18 (95% CI 1.14-1.23), respectively), hospitalisations (HR 1.09 (95% CI 1.01-1.17) and HR 1.19 (95% CI 1.12-1.27), respectively) and death (HR 1.23 (95% CI 1.04-1.44) and HR 1.18 (95% CI 1.03-1.34), respectively), which were strongest in the lowest socioeconomic groups and among patients with chronic respiratory, cardiometabolic and neurodegenerative diseases. We found positive associations with BC and negative associations with O3. CONCLUSION: Long-term exposure to air pollution may contribute to increased risk of contracting severe acute respiratory syndrome coronavirus 2 infection as well as developing severe COVID-19 disease requiring hospitalisation or resulting in death.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , Estudos de Coortes , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , SARS-CoV-2 , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Hospitalização , Fuligem , Dinamarca/epidemiologia
9.
Environ Health ; 22(1): 29, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36967400

RESUMO

BACKGROUND: Long-term exposure to air pollution and noise is detrimental to health; but studies that evaluated both remain limited. This study explores associations with natural and cause-specific mortality for a range of air pollutants and transportation noise. METHODS: Over 4 million adults in Switzerland were followed from 2000 to 2014. Exposure to PM2.5, PM2.5 components (Cu, Fe, S and Zn), NO2, black carbon (BC) and ozone (O3) from European models, and transportation noise from source-specific Swiss models, were assigned at baseline home addresses. Cox proportional hazards models, adjusted for individual and area-level covariates, were used to evaluate associations with each exposure and death from natural, cardiovascular (CVD) or non-malignant respiratory disease. Analyses included single and two exposure models, and subset analysis to study lower exposure ranges. RESULTS: During follow-up, 661,534 individuals died of natural causes (36.6% CVD, 6.6% respiratory). All exposures including the PM2.5 components were associated with natural mortality, with hazard ratios (95% confidence intervals) of 1.026 (1.015, 1.038) per 5 µg/m3 PM2.5, 1.050 (1.041, 1.059) per 10 µg/m3 NO2, 1.057 (1.048, 1.067) per 0.5 × 10-5/m BC and 1.045 (1.040, 1.049) per 10 dB Lden total transportation noise. NO2, BC, Cu, Fe and noise were consistently associated with CVD and respiratory mortality, whereas PM2.5 was only associated with CVD mortality. Natural mortality associations persisted < 20 µg/m3 for PM2.5 and NO2, < 1.5 10-5/m BC and < 53 dB Lden total transportation noise. The O3 association was inverse for all outcomes. Including noise attenuated all outcome associations, though many remained significant. Across outcomes, noise was robust to adjustment to air pollutants (e.g. natural mortality 1.037 (1.033, 1.042) per 10 dB Lden total transportation noise, after including BC). CONCLUSION: Long-term exposure to air pollution and transportation noise in Switzerland contribute to premature mortality. Considering co-exposures revealed the importance of local traffic-related pollutants such as NO2, BC and transportation noise.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Doenças Cardiovasculares , Ruído dos Transportes , Humanos , Adulto , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Suíça/epidemiologia , Causas de Morte , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Estudos de Coortes , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise
10.
Environ Health ; 22(1): 22, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36843017

RESUMO

BACKGROUND: Ambient air pollution has been recognized as one of the most important environmental health threats. Exposure in early life may affect pregnancy outcomes and the health of the offspring. The main objective of our study was to assess the association between prenatal exposure to traffic related air pollutants during pregnancy on birth weight and length. Second, to evaluate the association between prenatal exposure to traffic related air pollutants and the risk of low birth weight (LBW). METHODS: Three hundred forty mother-infant pairs were included in this prospective cohort study performed in Jakarta, March 2016-September 2020. Exposure to outdoor PM2.5, soot, NOx, and NO2 was assessed by land use regression (LUR) models at individual level. Multiple linear regression models were built to evaluate the association between air pollutants with birth weight (BW) and birth length (BL). Logistic regression was used to assess the risk of low birth weight (LBW) associated with all air pollutants. RESULTS: The average PM2.5 concentration was almost eight times higher than the current WHO guideline and the NO2 level was three times higher. Soot and NOx were significantly associated with reduced birth length. Birth length was reduced by - 3.83 mm (95% CI -6.91; - 0.75) for every IQR (0.74 × 10- 5 per m) increase of soot, and reduced by - 2.82 mm (95% CI -5.33;-0.30) for every IQR (4.68 µg/m3) increase of NOx. Outdoor air pollutants were not significantly associated with reduced birth weight nor the risk of LBW. CONCLUSION: Exposure to soot and NOx during pregnancy was associated with reduced birth length. Associations between exposure to all air pollutants with birth weight and the risk of LBW were less convincing.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Peso ao Nascer , Estudos de Coortes , Estudos Prospectivos , Fuligem , Dióxido de Nitrogênio/efeitos adversos , Países em Desenvolvimento , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Antropometria , Material Particulado/efeitos adversos , Exposição Materna/efeitos adversos
11.
Environ Res ; 224: 115552, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822536

RESUMO

BACKGROUND: Fine particulate matter (PM2.5) is a well-recognized risk factor for premature death. However, evidence on which PM2.5 components are most relevant is unclear. METHODS: We evaluated the associations between mortality and long-term exposure to eight PM2.5 elemental components [copper (Cu), iron (Fe), zinc (Zn), sulfur (S), nickel (Ni), vanadium (V), silicon (Si), and potassium (K)]. Studied outcomes included death from diabetes, chronic kidney disease (CKD), dementia, and psychiatric disorders as well as all-natural causes, cardiovascular disease (CVD), respiratory diseases (RD), and lung cancer. We followed all residents in Denmark (aged ≥30 years) from January 1, 2000 to December 31, 2017. We used European-wide land-use regression models at a 100 × 100 m scale to estimate the residential annual mean levels of exposure to PM2.5 components. The models were developed with supervised linear regression (SLR) and random forest (RF). The associations were evaluated by Cox proportional hazard models adjusting for individual- and area-level socioeconomic factors and total PM2.5 mass. RESULTS: Of 3,081,244 individuals, we observed 803,373 death from natural causes during follow-up. We found significant positive associations between all-natural mortality with Si and K from both exposure modeling approaches (hazard ratios; 95% confidence intervals per interquartile range increase): SLR-Si (1.04; 1.03-1.05), RF-Si (1.01; 1.00-1.02), SLR-K (1.03; 1.02-1.04), and RF-K (1.06; 1.05-1.07). Strong associations of K and Si were detected with most causes of mortality except CKD and K, and diabetes and Si (the strongest associations for psychiatric disorders mortality). In addition, Fe was relevant for mortality from RD, lung cancer, CKD, and psychiatric disorders; Zn with mortality from CKD, RD, and lung cancer, and; Ni and V with lung cancer mortality. CONCLUSIONS: We present novel results of the relevance of different PM2.5 components for different causes of death, with K and Si seeming to be most consistently associated with mortality in Denmark.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Exposição Ambiental , Mortalidade , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Causas de Morte , Estudos de Coortes , Dinamarca/epidemiologia , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Neoplasias Pulmonares/mortalidade , Níquel , Material Particulado/análise , Insuficiência Renal Crônica/mortalidade , Doenças Respiratórias/mortalidade , Zinco/análise
12.
Environ Int ; 171: 107667, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516478

RESUMO

BACKGROUND: The link between exposure to ambient air pollution and mortality from cardiorespiratory diseases is well established, while evidence on neurodegenerative disorders including Parkinson's Disease (PD) remains limited. OBJECTIVE: We examined the association between long-term exposure to ambient air pollution and PD mortality in seven European cohorts. METHODS: Within the project 'Effects of Low-Level Air Pollution: A Study in Europe' (ELAPSE), we pooled data from seven cohorts among six European countries. Annual mean residential concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (O3), as well as 8 PM2.5 components (copper, iron, potassium, nickel, sulphur, silicon, vanadium, zinc), for 2010 were estimated using Europe-wide hybrid land use regression models. PD mortality was defined as underlying cause of death being either PD, secondary Parkinsonism, or dementia in PD. We applied Cox proportional hazard models to investigate the associations between air pollution and PD mortality, adjusting for potential confounders. RESULTS: Of 271,720 cohort participants, 381 died from PD during 19.7 years of follow-up. In single-pollutant analyses, we observed positive associations between PD mortality and PM2.5 (hazard ratio per 5 µg/m3: 1.25; 95% confidence interval: 1.01-1.55), NO2 (1.13; 0.95-1.34 per 10 µg/m3), and BC (1.12; 0.94-1.34 per 0.5 × 10-5m-1), and a negative association with O3 (0.74; 0.58-0.94 per 10 µg/m3). Associations of PM2.5, NO2, and BC with PD mortality were linear without apparent lower thresholds. In two-pollutant models, associations with PM2.5 remained robust when adjusted for NO2 (1.24; 0.95-1.62) or BC (1.28; 0.96-1.71), whereas associations with NO2 or BC attenuated to null. O3 associations remained negative, but no longer statistically significant in models with PM2.5. We detected suggestive positive associations with the potassium component of PM2.5. CONCLUSION: Long-term exposure to PM2.5, at levels well below current EU air pollution limit values, may contribute to PD mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Doença de Parkinson , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Poluentes Ambientais/análise , Fuligem/análise
13.
Cancer Epidemiol Biomarkers Prev ; 32(1): 105-113, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36215200

RESUMO

BACKGROUND: Established risk factors for breast cancer include genetic disposition, reproductive factors, hormone therapy, and lifestyle-related factors such as alcohol consumption, physical inactivity, smoking, and obesity. More recently a role of environmental exposures, including air pollution, has also been suggested. The aim of this study, was to investigate the relationship between long-term air pollution exposure and breast cancer incidence. METHODS: We conducted a pooled analysis among six European cohorts (n = 199,719) on the association between long-term residential levels of ambient nitrogen dioxide (NO2), fine particles (PM2.5), black carbon (BC), and ozone in the warm season (O3) and breast cancer incidence in women. The selected cohorts represented the lower range of air pollutant concentrations in Europe. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: During 3,592,885 person-years of follow-up, we observed a total of 9,659 incident breast cancer cases. The results of the fully adjusted linear analyses showed a HR (95% confidence interval) of 1.03 (1.00-1.06) per 10 µg/m³ NO2, 1.06 (1.01-1.11) per 5 µg/m³ PM2.5, 1.03 (0.99-1.06) per 0.5 10-5 m-1 BC, and 0.98 (0.94-1.01) per 10 µg/m³ O3. The effect estimates were most pronounced in the group of middle-aged women (50-54 years) and among never smokers. CONCLUSIONS: The results were in support of an association between especially PM2.5 and breast cancer. IMPACT: The findings of this study suggest a role of exposure to NO2, PM2.5, and BC in development of breast cancer.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias da Mama , Ozônio , Pessoa de Meia-Idade , Humanos , Feminino , Material Particulado/efeitos adversos , Dióxido de Nitrogênio , Incidência , Neoplasias da Mama/induzido quimicamente , Neoplasias da Mama/epidemiologia , Poluição do Ar/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise
14.
Environ Res ; 215(Pt 2): 114385, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36154858

RESUMO

BACKGROUND: Particulate matter (PM) is classified as a group 1 human carcinogen. Previous experimental studies suggest that particles in diesel exhaust induce oxidative stress, inflammation and DNA damage in kidney cells, but the evidence from population studies linking air pollution to kidney cancer is limited. METHODS: We pooled six European cohorts (N = 302,493) to assess the association of residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) with cancer of the kidney parenchyma. The main exposure model was developed for year 2010. We defined kidney parenchyma cancer according to the International Classification of Diseases 9th and 10th Revision codes 189.0 and C64. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. RESULTS: The participants were followed from baseline (1985-2005) to 2011-2015. A total of 847 cases occurred during 5,497,514 person-years of follow-up (average 18.2 years). Median (5-95%) exposure levels of NO2, PM2.5, BC and O3 were 24.1 µg/m3 (12.8-39.2), 15.3 µg/m3 (8.6-19.2), 1.6 10-5 m-1 (0.7-2.1), and 87.0 µg/m3 (70.3-97.4), respectively. The results of the fully adjusted linear analyses showed a hazard ratio (HR) of 1.03 (95% confidence interval [CI]: 0.92, 1.15) per 10 µg/m³ NO2, 1.04 (95% CI: 0.88, 1.21) per 5 µg/m³ PM2.5, 0.99 (95% CI: 0.89, 1.11) per 0.5 10-5 m-1 BCE, and 0.88 (95% CI: 0.76, 1.02) per 10 µg/m³ O3. We did not find associations between any of the elemental components of PM2.5 and cancer of the kidney parenchyma. CONCLUSION: We did not observe an association between long-term ambient air pollution exposure and incidence of kidney parenchyma cancer.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias Renais , Ozônio , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Carbono/análise , Carcinógenos/análise , Cobre/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Humanos , Ferro/análise , Rim , Neoplasias Renais/induzido quimicamente , Neoplasias Renais/epidemiologia , Níquel , Dióxido de Nitrogênio/análise , Dióxido de Nitrogênio/toxicidade , Ozônio/análise , Material Particulado/análise , Material Particulado/toxicidade , Potássio/análise , Silício , Fuligem/análise , Enxofre/análise , Vanádio , Emissões de Veículos/análise , Zinco/análise
15.
Environ Int ; 166: 107341, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35717714

RESUMO

BACKGROUND: The majority of studies have shown higher greenness exposure associated with reduced mortality risks, but few controlled for spatially correlated air pollution and traffic noise exposures. We aim to address this research gap in the ELAPSE pooled cohort. METHODS: Mean Normalized Difference Vegetation Index (NDVI) in a 300-m grid cell and 1-km radius were assigned to participants' baseline home addresses as a measure of surrounding greenness exposure. We used Cox proportional hazards models to estimate the association of NDVI exposure with natural-cause and cause-specific mortality, adjusting for a number of potential confounders including socioeconomic status and lifestyle factors at individual and area-levels. We further assessed the associations between greenness exposure and mortality after adjusting for fine particulate matter (PM2.5), nitrogen dioxide (NO2) and road traffic noise. RESULTS: The pooled study population comprised 327,388 individuals who experienced 47,179 natural-cause deaths during 6,374,370 person-years of follow-up. The mean NDVI in the pooled cohort was 0.33 (SD 0.1) and 0.34 (SD 0.1) in the 300-m grid and 1-km buffer. In the main fully adjusted model, 0.1 unit increment of NDVI inside 300-m grid was associated with 5% lower risk of natural-cause mortality (Hazard Ratio (HR) 0.95 (95% CI: 0.94, 0.96)). The associations attenuated after adjustment for air pollution [HR (95% CI): 0.97 (0.96, 0.98) adjusted for PM2.5; 0.98 (0.96, 0.99) adjusted for NO2]. Additional adjustment for traffic noise hardly affected the associations. Consistent results were observed for NDVI within 1-km buffer. After adjustment for air pollution, NDVI was inversely associated with diabetes, respiratory and lung cancer mortality, yet with wider 95% confidence intervals. No association with cardiovascular mortality was found. CONCLUSIONS: We found a significant inverse association between surrounding greenness and natural-cause mortality, which remained after adjusting for spatially correlated air pollution and traffic noise.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio/análise , Causas de Morte , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Poluição do Ar/efeitos adversos
16.
Environ Int ; 164: 107241, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35544998

RESUMO

BACKGROUND: The association between long-term exposure to air pollution and mortality from cardiorespiratory diseases is well established, yet the evidence for other diseases remains limited. OBJECTIVES: To examine the associations of long-term exposure to air pollution with mortality from diabetes, dementia, psychiatric disorders, chronic kidney disease (CKD), asthma, acute lower respiratory infection (ALRI), as well as mortality from all-natural and cardiorespiratory causes in the Danish nationwide administrative cohort. METHODS: We followed all residents aged ≥ 30 years (3,083,227) in Denmark from 1 January 2000 until 31 December 2017. Annual mean concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (warm season) were estimated using European-wide hybrid land-use regression models (100 m × 100 m) and assigned to baseline residential addresses. We used Cox proportional hazard models to evaluate the association between air pollution and mortality, accounting for demographic and socioeconomic factors. We additionally applied indirect adjustment for smoking and body mass index (BMI). RESULTS: During 47,023,454 person-years of follow-up, 803,881 people died from natural causes. Long-term exposure to PM2.5 (mean: 12.4 µg/m3), NO2 (20.3 µg/m3), and/or BC (1.0 × 10-5/m) was statistically significantly associated with all studied mortality outcomes except CKD. A 5 µg/m3 increase in PM2.5 was associated with higher mortality from all-natural causes (hazard ratio 1.11; 95% confidence interval 1.09-1.13), cardiovascular disease (1.09; 1.07-1.12), respiratory disease (1.11; 1.07-1.15), lung cancer (1.19; 1.15-1.24), diabetes (1.10; 1.04-1.16), dementia (1.05; 1.00-1.10), psychiatric disorders (1.38; 1.27-1.50), asthma (1.13; 0.94-1.36), and ALRI (1.14; 1.09-1.20). Associations with long-term exposure to ozone (mean: 80.2 µg/m3) were generally negative but became significantly positive for several endpoints in two-pollutant models. Generally, associations were attenuated but remained significant after indirect adjustment for smoking and BMI. CONCLUSION: Long-term exposure to PM2.5, NO2, and/or BC in Denmark were associated with mortality beyond cardiorespiratory diseases, including diabetes, dementia, psychiatric disorders, asthma, and ALRI.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Demência , Neoplasias Pulmonares , Ozônio , Insuficiência Renal Crônica , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos de Coortes , Dinamarca/epidemiologia , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Dióxido de Nitrogênio , Material Particulado/efeitos adversos , Material Particulado/análise , Fuligem
17.
Am J Respir Crit Care Med ; 205(12): 1429-1439, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35258439

RESUMO

Rationale: Ambient air pollution exposure has been linked to mortality from chronic cardiorespiratory diseases, while evidence on respiratory infections remains more limited. Objectives: We examined the association between long-term exposure to air pollution and pneumonia-related mortality in adults in a pool of eight European cohorts. Methods: Within the multicenter project ELAPSE (Effects of Low-Level Air Pollution: A Study in Europe), we pooled data from eight cohorts among six European countries. Annual mean residential concentrations in 2010 for fine particulate matter, nitrogen dioxide (NO2), black carbon (BC), and ozone were estimated using Europe-wide hybrid land-use regression models. We applied stratified Cox proportional hazard models to investigate the associations between air pollution and pneumonia, influenza, and acute lower respiratory infections (ALRI) mortality. Measurements and Main Results: Of 325,367 participants, 712 died from pneumonia and influenza combined, 682 from pneumonia, and 695 from ALRI during a mean follow-up of 19.5 years. NO2 and BC were associated with 10-12% increases in pneumonia and influenza combined mortality, but 95% confidence intervals included unity (hazard ratios, 1.12 [0.99-1.26] per 10 µg/m3 for NO2; 1.10 [0.97-1.24] per 0.5 10-5m-1 for BC). Associations with pneumonia and ALRI mortality were almost identical. We detected effect modification suggesting stronger associations with NO2 or BC in overweight, employed, or currently smoking participants compared with normal weight, unemployed, or nonsmoking participants. Conclusions: Long-term exposure to combustion-related air pollutants NO2 and BC may be associated with mortality from lower respiratory infections, but larger studies are needed to estimate these associations more precisely.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Influenza Humana , Pneumonia , Adulto , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Dióxido de Nitrogênio/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise
18.
Br J Cancer ; 126(10): 1499-1507, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35173304

RESUMO

BACKGROUND: The evidence linking ambient air pollution to bladder cancer is limited and mixed. METHODS: We assessed the associations of bladder cancer incidence with residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight PM2.5 elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in a pooled cohort (N = 302,493). Exposures were primarily assessed based on 2010 measurements and back-extrapolated to the baseline years. We applied Cox proportional hazard models adjusting for individual- and area-level potential confounders. RESULTS: During an average of 18.2 years follow-up, 967 bladder cancer cases occurred. We observed a positive though statistically non-significant association between PM2.5 and bladder cancer incidence. Hazard Ratios (HR) were 1.09 (95% confidence interval (CI): 0.93-1.27) per 5 µg/m3 for 2010 exposure and 1.06 (95% CI: 0.99-1.14) for baseline exposure. Effect estimates for NO2, BC and O3 were close to unity. A positive association was observed with PM2.5 zinc (HR 1.08; 95% CI: 1.00-1.16 per 10 ng/m3). CONCLUSIONS: We found suggestive evidence of an association between long-term PM2.5 mass exposure and bladder cancer, strengthening the evidence from the few previous studies. The association with zinc in PM2.5 suggests the importance of industrial emissions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Neoplasias da Bexiga Urinária , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Incidência , Masculino , Dióxido de Nitrogênio , Material Particulado/efeitos adversos , Doenças Raras , Neoplasias da Bexiga Urinária/epidemiologia , Neoplasias da Bexiga Urinária/etiologia , Zinco
19.
Lancet Planet Health ; 6(1): e9-e18, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34998464

RESUMO

BACKGROUND: Long-term exposure to ambient air pollution has been associated with premature mortality, but associations at concentrations lower than current annual limit values are uncertain. We analysed associations between low-level air pollution and mortality within the multicentre study Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE). METHODS: In this multicentre longitudinal study, we analysed seven population-based cohorts of adults (age ≥30 years) within ELAPSE, from Belgium, Denmark, England, the Netherlands, Norway, Rome (Italy), and Switzerland (enrolled in 2000-11; follow-up until 2011-17). Mortality registries were used to extract the underlying cause of death for deceased individuals. Annual average concentrations of fine particulate matter (PM2·5), nitrogen dioxide (NO2), black carbon, and tropospheric warm-season ozone (O3) from Europe-wide land use regression models at 100 m spatial resolution were assigned to baseline residential addresses. We applied cohort-specific Cox proportional hazard models with adjustment for area-level and individual-level covariates to evaluate associations with non-accidental mortality, as the main outcome, and with cardiovascular, non-malignant respiratory, and lung cancer mortality. Subset analyses of participants living at low pollutant concentrations (as per predefined values) and natural splines were used to investigate the concentration-response function. Cohort-specific effect estimates were pooled in a random-effects meta-analysis. FINDINGS: We analysed 28 153 138 participants contributing 257 859 621 person-years of observation, during which 3 593 741 deaths from non-accidental causes occurred. We found significant positive associations between non-accidental mortality and PM2·5, NO2, and black carbon, with a hazard ratio (HR) of 1·053 (95% CI 1·021-1·085) per 5 µg/m3 increment in PM2·5, 1·044 (1·019-1·069) per 10 µg/m3 NO2, and 1·039 (1·018-1·059) per 0·5 × 10-5/m black carbon. Associations with PM2·5, NO2, and black carbon were slightly weaker for cardiovascular mortality, similar for non-malignant respiratory mortality, and stronger for lung cancer mortality. Warm-season O3 was negatively associated with both non-accidental and cause-specific mortality. Associations were stronger at low concentrations: HRs for non-accidental mortality at concentrations lower than the WHO 2005 air quality guideline values for PM2·5 (10 µg/m3) and NO2 (40 µg/m3) were 1·078 (1·046-1·111) per 5 µg/m3 PM2·5 and 1·049 (1·024-1·075) per 10 µg/m3 NO2. Similarly, the association between black carbon and non-accidental mortality was highest at low concentrations, with a HR of 1·061 (1·032-1·092) for exposure lower than 1·5× 10-5/m, and 1·081 (0·966-1·210) for exposure lower than 1·0× 10-5/m. INTERPRETATION: Long-term exposure to concentrations of PM2·5 and NO2 lower than current annual limit values was associated with non-accidental, cardiovascular, non-malignant respiratory, and lung cancer mortality in seven large European cohorts. Continuing research on the effects of low concentrations of air pollutants is expected to further inform the process of setting air quality standards in Europe and other global regions. FUNDING: Health Effects Institute.


Assuntos
Poluição do Ar , Exposição Ambiental , Mortalidade Prematura , Adulto , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Europa (Continente)/epidemiologia , Humanos , Estudos Longitudinais , Estudos Multicêntricos como Assunto , Material Particulado/efeitos adversos , Material Particulado/análise
20.
Sci Total Environ ; 804: 150091, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34517316

RESUMO

BACKGROUND: Ambient air pollution exposure has been associated with higher mortality risk in numerous studies. We assessed potential variability in the magnitude of this association for non-accidental, cardiovascular disease, respiratory disease, and lung cancer mortality in a country-wide administrative cohort by exposure assessment method and by adjustment for geographic subdivisions. METHODS: We used the Belgian 2001 census linked to population and mortality register including nearly 5.5 million adults aged ≥30 (mean follow-up: 9.97 years). Annual mean concentrations for fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) were assessed at baseline residential address using two exposure methods; Europe-wide hybrid land use regression (LUR) models [100x100m], and Belgium-wide interpolation-dispersion (RIO-IFDM) models [25x25m]. We used Cox proportional hazards models with age as the underlying time scale and adjusted for various individual and area-level covariates. We further adjusted main models for two different area-levels following the European Nomenclature of Territorial Units for Statistics (NUTS); NUTS-1 (n = 3), or NUTS-3 (n = 43). RESULTS: We found no consistent differences between both exposure methods. We observed most robust associations with lung cancer mortality. Hazard Ratios (HRs) per 10 µg/m3 increase for NO2 were 1.060 (95%CI 1.042-1.078) [hybrid LUR] and 1.040 (95%CI 1.022-1.058) [RIO-IFDM]. Associations with non-accidental, respiratory disease and cardiovascular disease mortality were generally null in main models but were enhanced after further adjustment for NUTS-1 or NUTS-3. HRs for non-accidental mortality per 5 µg/m3 increase for PM2.5 for the main model using hybrid LUR exposure were 1.023 (95%CI 1.011-1.035). After including random effects HRs were 1.044 (95%CI 1.033-1.057) [NUTS-1] and 1.076 (95%CI 1.060-1.092) [NUTS-3]. CONCLUSION: Long-term air pollution exposure was associated with higher lung cancer mortality risk but not consistently with the other studied causes. Magnitude of associations varied by adjustment for geographic subdivisions, area-level socio-economic covariates and less by exposure assessment method.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Poluição do Ar/estatística & dados numéricos , Censos , Estudos de Coortes , Exposição Ambiental/análise , Exposição Ambiental/estatística & dados numéricos , Humanos , Material Particulado/análise , Material Particulado/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA