Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Imaging Inform Med ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689150

RESUMO

The cited article reports on a convolutional neural network trained to predict response to neoadjuvant chemotherapy from pre-treatment breast MRI scans. The proposed algorithm attains impressive performance on the test dataset with a mean Area Under the Receiver-Operating Characteristic curve of 0.98 and a mean accuracy of 88%. In this letter, I raise concerns that the reported results can be explained by inadvertent data leakage between training and test datasets. More precisely, I conjecture that the random split of the full dataset in training and test sets did not occur on a patient level, but rather on the level of 2D MRI slices. This allows the neural network to "memorize" a patient's anatomy and their treatment outcome, as opposed to discovering useful features for treatment response prediction. To provide evidence for these claims, I present results of similar experiments I conducted on a public breast MRI dataset, where I demonstrate that the suspected data leakage mechanism closely reproduces the results reported on in the cited work.

2.
J Magn Reson Imaging ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581127

RESUMO

In breast imaging, there is an unrelenting increase in the demand for breast imaging services, partly explained by continuous expanding imaging indications in breast diagnosis and treatment. As the human workforce providing these services is not growing at the same rate, the implementation of artificial intelligence (AI) in breast imaging has gained significant momentum to maximize workflow efficiency and increase productivity while concurrently improving diagnostic accuracy and patient outcomes. Thus far, the implementation of AI in breast imaging is at the most advanced stage with mammography and digital breast tomosynthesis techniques, followed by ultrasound, whereas the implementation of AI in breast magnetic resonance imaging (MRI) is not moving along as rapidly due to the complexity of MRI examinations and fewer available dataset. Nevertheless, there is persisting interest in AI-enhanced breast MRI applications, even as the use of and indications of breast MRI continue to expand. This review presents an overview of the basic concepts of AI imaging analysis and subsequently reviews the use cases for AI-enhanced MRI interpretation, that is, breast MRI triaging and lesion detection, lesion classification, prediction of treatment response, risk assessment, and image quality. Finally, it provides an outlook on the barriers and facilitators for the adoption of AI in breast MRI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 6.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA