Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem (Oxf) ; 8: 100193, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38292011

RESUMO

Polyphenolic compounds are a class of phytonutrients that play important roles in plants and contribute to human health when incorporated into our diet through fruit consumption. A large proportion occur as glycoconjugates but the enzymes responsible for their glycosylation are poorly characterized. Here, we report the biochemical and structural characterization of two glycosyltransferases from sweet cherry named PaUGT1 and PaUGT2. Both are promiscuous glucosyltransferases active on diverse anthocyanidins and flavonols, as well as phenolic acids in the case of PaUGT1. They also exhibit weaker galactosyltransferase activity. The expression of the gene encoding PaUGT1, the most active of the two proteins, follows anthocyanin accumulation during fruit ripening, suggesting that this enzyme is the primary glycosyltransferase involved in flavonoid glycosylation in sweet cherry. It can potentially be used to synthesize diverse glycoconjugates of flavonoids for integration into bioactive formulations, and for generating new fruit cultivars with enhanced health-promoting properties using breeding methods.

2.
Bioorg Med Chem ; 96: 117509, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37948922

RESUMO

d-Alanine-d-alanine ligase (Ddl) catalyses the ATP-dependent formation of d-Ala-d-Ala, a critical component in bacterial cell wall biosynthesis and is a validated target for new antimicrobial agents. Here, we describe the structure-guided design, synthesis, and evaluation of ATP-competitive N-acyl-substituted sulfamides 27-36, 42, 46, 47 as inhibitors of Staphylococcus aureus Ddl (SaDdl). A crystal structure of SaDdl complexed with ATP and d-Ala-d-Ala (PDB: 7U9K) identified ATP-mimetic 8 as an initial scaffold for further inhibitor design. Evaluation of 8 in SaDdl enzyme inhibition assays revealed the ability to reduce enzyme activity to 72 ± 8 % (IC50 = 1.6 mM). The sulfamide linker of 8 was extended with 2-(4-methoxyphenyl)ethanol to give 29, to investigate further interactions with the d-Ala pocket of SaDdl, as predicted by molecular docking. This compound reduced enzyme activity to 89 ± 1 %, with replacement of the 4-methoxyphenyl group in 29 with alternative phenyl substituents (27, 28, 31-33, 35, 36) failing to significantly improve on this (80-89 % remaining enzyme activity). Exchanging these phenyl substituents with selected heterocycles (42, 46, 47) did improve activity, with the most active compound (42) reducing SaDdl activity to 70 ± 1 % (IC50 = 1.7 mM), which compares favourably to the FDA-approved inhibitor d-cycloserine (DCS) (IC50 = 0.1 mM). To the best of our knowledge, this is the first reported study of bisubstrate SaDdl inhibitors.


Assuntos
Alanina , Peptídeo Sintases , Simulação de Acoplamento Molecular , Peptídeo Sintases/química , Trifosfato de Adenosina/química
3.
J Fungi (Basel) ; 9(11)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37998903

RESUMO

Invasive fungal infections (IFIs) are prevalent in immunocompromised patients. Due to alarming levels of increasing resistance in clinical settings, new drugs targeting the major fungal pathogen Aspergillus fumigatus are required. Attractive drug targets are those involved in essential processes like DNA replication, such as proliferating cell nuclear antigens (PCNAs). PCNA has been previously studied in cancer research and presents a viable target for antifungals. Human PCNA interacts with the p21 protein, outcompeting binding proteins to halt DNA replication. The affinity of p21 for hPCNA has been shown to outcompete other associating proteins, presenting an attractive scaffold for peptidomimetic design. p21 has no A. fumigatus homolog to our knowledge, yet our group has previously demonstrated that human p21 can interact with A. fumigatus PCNA (afumPCNA). This suggests that a p21-based inhibitor could be designed to outcompete the native binding partners of afumPCNA to inhibit fungal growth. Here, we present an investigation of extensive structure-activity relationships between designed p21-based peptides and afumPCNA and the first crystal structure of a p21 peptide bound to afumPCNA, demonstrating that the A. fumigatus replication model uses a PIP-box sequence as the method for binding to afumPCNA. These results inform the new optimized secondary structure design of a potential peptidomimetic inhibitor of afumPCNA.

4.
FEBS J ; 290(23): 5536-5553, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37581574

RESUMO

Pseudomonas aeruginosa is a major human pathogen in the healthcare setting. The emergence of multi-drug-resistant and extensive drug-resistant P. aeruginosa is of great concern, and clearly indicates that new alternatives to current first-line antibiotics are required in the future. Inhibition of d-alanine-d-alanine production presents as a promising avenue as it is a key component in the essential process of cell wall biosynthesis. In P. aeruginosa, d-alanine-d-alanine production is facilitated by two isoforms, d-alanine-d-alanine ligase A (PaDdlA) and d-alanine-d-alanine ligase B (PaDdlA), but neither enzyme has been individually characterised to date. Here, we present the functional and structural characterisation of PaDdlA and PaDdlB, and assess their potential as antibiotic targets. This was achieved using a combination of in vitro enzyme-activity assays and X-ray crystallography. The former revealed that both isoforms effectively catalyse d-alanine-d-alanine production with near identical efficiency, and that this is effectively disrupted by the model d-alanine-d-alanine ligase inhibitor, d-cycloserine. Next, each isoform was co-crystallised with ATP and either d-alanine-d-alanine or d-cycloserine, allowing direct comparison of the key structural features. Both isoforms possess the same structural architecture and share a high level of conservation within the active site. Although residues forming the d-alanine pocket are completely conserved, the ATP-binding pocket possesses several amino acid substitutions resulting in a differing chemical environment around the ATP adenine base. Together, these findings support that the discovery of dual PaDdlA/PaDdlB competitive inhibitors is a viable approach for developing new antibiotics against P. aeruginosa.


Assuntos
Antibacterianos , Ciclosserina , Humanos , Antibacterianos/farmacologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Alanina , Estudos Prospectivos , Peptídeo Sintases/química , Isoformas de Proteínas , Trifosfato de Adenosina/química
5.
J Med Chem ; 66(15): 10354-10363, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37489955

RESUMO

Human proliferating cell nuclear antigen (PCNA) is a critical mediator of DNA replication and repair, acting as a docking platform for replication proteins. Disrupting these interactions with a peptidomimetic agent presents as a promising avenue to limit proliferation of cancerous cells. Here, a p21-derived peptide was employed as a starting scaffold to design a modular peptidomimetic that interacts with PCNA and is cellular and nuclear permeable. Ultimately, a peptidomimetic was produced which met these criteria, consisting of a fluorescein tag and SV40 nuclear localization signal conjugated to the N-terminus of a p21 macrocycle derivative. Attachment of the fluorescein tag was found to directly affect cellular uptake of the peptidomimetic, with fluorescein being requisite for nuclear permeability. This work provides an important step forward in the development of PCNA targeting peptidomimetics for use as anti-cancer agents or as cancer diagnostics.


Assuntos
Peptidomiméticos , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Peptidomiméticos/farmacologia , Replicação do DNA , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fluoresceínas
6.
Biophys Rep (N Y) ; 3(1): 100100, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36949749

RESUMO

Human aquaporin 1 (hAQP1) forms homotetrameric channels that facilitate fluxes of water and small solutes across cell membranes. In addition to water channel activity, hAQP1 displays non-selective monovalent cation-channel activity gated by intracellular cyclic GMP. Dual water and ion-channel activity of hAQP1, thought to regulate cell shape and volume, could offer a target for novel therapeutics relevant to controlling cancer cell invasiveness. This study probed properties of hAQP1 ion channels using proteoliposomes, which, unlike conventional cell-based systems such as Xenopus laevis oocytes, are relatively free of background ion channels. Histidine-tagged recombinant hAQP1 protein was synthesized and purified from the methylotrophic yeast, Pichia pastoris, and reconstituted into proteoliposomes for biophysical analyses. Osmotic water channel activity confirmed correct folding and channel assembly. Ion-channel activity of hAQP1-Myc-His6 was recorded by patch-clamp electrophysiology with excised patches. In symmetrical potassium, the hAQP1-Myc-His6 channels displayed coordinated gating, a single-channel conductance of approximately 75 pS, and multiple subconductance states. Applicability of this method for structure-function analyses was tested using hAQP1-Myc-His6 D48A/D185A channels modified by site-directed mutations of charged Asp residues estimated to be adjacent to the central ion-conducting pore of the tetramer. No differences in conductance were detected between mutant and wild-type constructs, suggesting the open-state conformation could differ substantially from expectations based on crystal structures. Nonetheless, the method pioneered here for AQP1 demonstrates feasibility for future work defining structure-function relationships, screening pharmacological inhibitors, and testing other classes in the broad family of aquaporins for previously undiscovered ion-conducting capabilities.

7.
J Biol Chem ; 298(10): 102392, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988643

RESUMO

Enzymes involved in Staphylococcus aureus amino acid metabolism have recently gained traction as promising targets for the development of new antibiotics, however, not all aspects of this process are understood. The ATP-grasp superfamily includes enzymes that predominantly catalyze the ATP-dependent ligation of various carboxylate and amine substrates. One subset, ʟ-amino acid ligases (LALs), primarily catalyze the formation of dipeptide products in Gram-positive bacteria, however, their involvement in S. aureus amino acid metabolism has not been investigated. Here, we present the characterization of the putative ATP-grasp enzyme (SAOUHSC_02373) from S. aureus NCTC 8325 and its identification as a novel LAL. First, we interrogated the activity of SAOUHSC_02373 against a panel of ʟ-amino acid substrates. As a result, we identified SAOUHSC_02373 as an LAL with high selectivity for ʟ-aspartate and ʟ-methionine substrates, specifically forming an ʟ-aspartyl-ʟ-methionine dipeptide. Thus, we propose that SAOUHSC_02373 be assigned as ʟ-aspartate-ʟ-methionine ligase (LdmS). To further understand this unique activity, we investigated the mechanism of LdmS by X-ray crystallography, molecular modeling, and site-directed mutagenesis. Our results suggest that LdmS shares a similar mechanism to other ATP-grasp enzymes but possesses a distinctive active site architecture that confers selectivity for the ʟ-Asp and ʟ-Met substrates. Phylogenetic analysis revealed LdmS homologs are highly conserved in Staphylococcus and closely related Gram-positive Firmicutes. Subsequent genetic analysis upstream of the ldmS operon revealed several trans-acting regulatory elements associated with control of Met and Cys metabolism. Together, these findings support a role for LdmS in Staphylococcal sulfur amino acid metabolism.


Assuntos
Proteínas de Bactérias , Cisteína , Metionina , Peptídeo Sintases , Staphylococcus aureus , Trifosfato de Adenosina/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Dipeptídeos/biossíntese , Metionina/química , Metionina/metabolismo , Filogenia , Staphylococcus aureus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Peptídeo Sintases/química , Peptídeo Sintases/classificação , Peptídeo Sintases/genética , Cisteína/química , Cisteína/metabolismo
8.
Front Cell Dev Biol ; 10: 942053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903543

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, arising from immature lymphocytes that show uncontrolled proliferation and arrested differentiation. Genomic alterations affecting Janus kinase 2 (JAK2) correlate with some of the poorest outcomes within the Philadelphia-like subtype of ALL. Given the success of kinase inhibitors in the treatment of chronic myeloid leukemia, the discovery of activating JAK2 point mutations and JAK2 fusion genes in ALL, was a breakthrough for potential targeted therapies. However, the molecular mechanisms by which these alterations activate JAK2 and promote downstream signaling is poorly understood. Furthermore, as clinical data regarding the limitations of approved JAK inhibitors in myeloproliferative disorders matures, there is a growing awareness of the need for alternative precision medicine approaches for specific JAK2 lesions. This review focuses on the molecular mechanisms behind ALL-associated JAK2 mutations and JAK2 fusion genes, known and potential causes of JAK-inhibitor resistance, and how JAK2 alterations could be targeted using alternative and novel rationally designed therapies to guide precision medicine approaches for these high-risk subtypes of ALL.

9.
Nature ; 609(7926): 400-407, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35768504

RESUMO

The RAS-RAF pathway is one of the most commonly dysregulated in human cancers1-3. Despite decades of study, understanding of the molecular mechanisms underlying dimerization and activation4 of the kinase RAF remains limited. Recent structures of inactive RAF monomer5 and active RAF dimer5-8 bound to 14-3-39,10 have revealed the mechanisms by which 14-3-3 stabilizes both RAF conformations via specific phosphoserine residues. Prior to RAF dimerization, the protein phosphatase 1 catalytic subunit (PP1C) must dephosphorylate the N-terminal phosphoserine (NTpS) of RAF11 to relieve inhibition by 14-3-3, although PP1C in isolation lacks intrinsic substrate selectivity. SHOC2 is as an essential scaffolding protein that engages both PP1C and RAS to dephosphorylate RAF NTpS11-13, but the structure of SHOC2 and the architecture of the presumptive SHOC2-PP1C-RAS complex remain unknown. Here we present a cryo-electron microscopy structure of the SHOC2-PP1C-MRAS complex to an overall resolution of 3 Å, revealing a tripartite molecular architecture in which a crescent-shaped SHOC2 acts as a cradle and brings together PP1C and MRAS. Our work demonstrates the GTP dependence of multiple RAS isoforms for complex formation, delineates the RAS-isoform preference for complex assembly, and uncovers how the SHOC2 scaffold and RAS collectively drive specificity of PP1C for RAF NTpS. Our data indicate that disease-relevant mutations affect complex assembly, reveal the simultaneous requirement of two RAS molecules for RAF activation, and establish rational avenues for discovery of new classes of inhibitors to target this pathway.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteína Fosfatase 1 , Transdução de Sinais , Proteínas ras , Microscopia Crioeletrônica , Guanosina Trifosfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mutação , Fosfosserina , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/ultraestrutura , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 1/ultraestrutura , Especificidade por Substrato , Quinases raf/metabolismo , Proteínas ras/química , Proteínas ras/genética , Proteínas ras/metabolismo , Proteínas ras/ultraestrutura
10.
Nat Biotechnol ; 40(5): 769-778, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34992247

RESUMO

Small molecules that stabilize inactive protein conformations are an underutilized strategy for drugging dynamic or otherwise intractable proteins. To facilitate the discovery and characterization of such inhibitors, we created a screening platform to identify conformation-locking antibodies for molecular probes (CLAMPs) that distinguish and induce rare protein conformational states. Applying the approach to KRAS, we discovered CLAMPs that recognize the open conformation of KRASG12C stabilized by covalent inhibitors. One CLAMP enables the visualization of KRASG12C covalent modification in vivo and can be used to investigate response heterogeneity to KRASG12C inhibitors in patient tumors. A second CLAMP enhances the affinity of weak ligands binding to the KRASG12C switch II region (SWII) by stabilizing a specific conformation of KRASG12C, thereby enabling the discovery of such ligands that could serve as leads for the development of drugs in a high-throughput screen. We show that combining the complementary properties of antibodies and small molecules facilitates the study and drugging of dynamic proteins.


Assuntos
Anticorpos , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Anticorpos/química , Humanos , Ligantes , Mutação , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores
11.
RSC Chem Biol ; 2(5): 1499-1508, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34704055

RESUMO

The human sliding clamp protein known as proliferating cell nuclear antigen (PCNA) orchestrates DNA-replication and -repair and as such is an ideal therapeutic target for proliferative diseases, including cancer. Peptides derived from the human p21 protein bind PCNA with high affinity via a 310-helical binding conformation and are known to shut down DNA-replication. Here, we present studies on short analogues of p21 peptides (143-151) conformationally constrained with a covalent linker between i, i + 4 separated cysteine residues at positions 145 and 149 to access peptidomimetics that target PCNA. The resulting macrocycles bind PCNA with K D values ranging from 570 nM to 3.86 µM, with the bimane-constrained peptide 7 proving the most potent. Subsequent X-ray crystallography and computational modelling studies of the macrocyclic peptides bound to PCNA indicated only the high-affinity peptide 7 adopted the classical 310-helical binding conformation. This suggests the 310-helical conformation is critical to high affinity PCNA binding, however NMR secondary shift analysis of peptide 7 revealed this secondary structure was not well-defined in solution. Peptide 7 is cell permeable and localised to the cell cytosol of breast cancer cells (MDA-MB-468), revealed by confocal microscopy showing blue fluorescence of the bimane linker. The inherent fluorescence of the bimane moiety present in peptide 7 allowed it to be directly imaged in the cell uptake assay, without attachment of an auxiliary fluorescent tag. This highlights a significant benefit of using a bimane constraint to access conformationally constrained macrocyclic peptides. This study identifies a small peptidomimetic that binds PCNA with higher affinity than previous reported p21 macrocycles, and is cell permeable, providing a significant advance toward development of a PCNA inhibitor for therapeutic applications.

12.
NPJ Precis Oncol ; 5(1): 75, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376782

RESUMO

Ruxolitinib (rux) Phase II clinical trials are underway for the treatment of high-risk JAK2-rearranged (JAK2r) B-cell acute lymphoblastic leukemia (B-ALL). Treatment resistance to targeted inhibitors in other settings is common; elucidating potential mechanisms of rux resistance in JAK2r B-ALL will enable development of therapeutic strategies to overcome or avert resistance. We generated a murine pro-B cell model of ATF7IP-JAK2 with acquired resistance to multiple type-I JAK inhibitors. Resistance was associated with mutations within the JAK2 ATP/rux binding site, including a JAK2 p.G993A mutation. Using in vitro models of JAK2r B-ALL, JAK2 p.G993A conferred resistance to six type-I JAK inhibitors and the type-II JAK inhibitor, CHZ-868. Using computational modeling, we postulate that JAK2 p.G993A enabled JAK2 activation in the presence of drug binding through a unique resistance mechanism that modulates the mobility of the conserved JAK2 activation loop. This study highlights the importance of monitoring mutation emergence and may inform future drug design and the development of therapeutic strategies for this high-risk patient cohort.

13.
Vaccine ; 39(34): 4830-4841, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34284876

RESUMO

Human ferritin heavy chain, an example of a protein nanoparticle, has recently been used as a vaccine delivery platform. Human ferritin has advantages of uniform architecture, robust thermal and chemical stabilities, and good biocompatibility and biodegradation. There is however a lack of understanding about the relationship between insertion sites in ferritin (N-terminus and C-terminus) and the corresponding humoral and cell-mediated immune responses. To bridge this gap, we utilized an Epstein-Barr Nuclear Antigen 1 (EBNA1) epitope as a model to produce engineered ferritin-based vaccines E1F1 (N-terminus insertion) and F1E1 (C-terminus insertion) for the prevention of Epstein-Barr virus (EBV) infections. X-ray crystallography confirmed the relative positions of the N-terminus insertion and C-terminus insertion. For N-terminus insertion, the epitopes were located on the exterior surface of ferritin, while for C-terminus insertion, the epitopes were inside the ferritin cage. Based on the results of antigen-specific antibody titers from in-vivo tests, we found that there was no obvious difference on humoral immune responses between N-terminus and C-terminus insertion. We also evaluated splenocyte proliferation and memory lymphocyte T cell differentiation. Both results suggested C-terminus insertion produced a stronger proliferative response and cell-mediated immune response than N-terminus insertion. C-terminus insertion of EBNA1 epitope was also processed more efficiently by dendritic cells (DCs) than N-terminus insertion. This provides new insight into the relationship between the insertion site and immunogenicity of ferritin nanoparticle vaccines.


Assuntos
Infecções por Vírus Epstein-Barr , Epitopos , Antígenos Nucleares do Vírus Epstein-Barr , Ferritinas/genética , Herpesvirus Humano 4/genética , Humanos
14.
Chembiochem ; 22(17): 2711-2720, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34107164

RESUMO

An i-i+4 or i-i+3 bimane-containing linker was introduced into a peptide known to target Estrogen Receptor alpha (ERα), in order to stabilise an α-helical geometry. These macrocycles were studied by CD and NMR to reveal the i-i+4 constrained peptide adopts a 310 -helical structure in solution, and an α-helical conformation on interaction with the ERα coactivator recruitment surface in silico. An acyclic bimane-modified peptide is also helical, when it includes a tryptophan or tyrosine residue; but is significantly less helical with a phenylalanine or alanine residue, which indicates such a bimane modification influences peptide structure in a sequence dependent manner. The fluorescence intensity of the bimane appears influenced by peptide conformation, where helical peptides displayed a fluorescence increase when TFE was added to phosphate buffer, compared to a decrease for less helical peptides. This study presents the bimane as a useful modification to influence peptide structure as an acyclic peptide modification, or as a side-chain constraint to give a macrocycle.


Assuntos
Cisteína/química , Peptídeos/química , Sequência de Aminoácidos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Dicroísmo Circular , Receptor alfa de Estrogênio/química , Espectroscopia de Ressonância Magnética , Peptídeos/síntese química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Espectrometria de Fluorescência
15.
Cancer Lett ; 512: 28-37, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33971281

RESUMO

Activating TYK2-rearrangements have recently been identified and implicated in the leukemogenesis of high-risk acute lymphoblastic leukemia (HR-ALL) cases. Pre-clinical studies indicated the JAK/TYK2 inhibitor (JAKi), cerdulatinib, as a promising therapeutic against TYK2-rearranged ALL, attenuating the constitutive JAK/STAT signaling resulting from the TYK2 fusion protein. However, following a period of clinical efficacy, JAKi resistance often occurs resulting in relapse. In this study, we modeled potential mechanisms of JAKi resistance in TYK2-rearranged ALL cells in vitro in order to recapitulate possible clinical scenarios and provide a rationale for alternative therapies. Cerdulatinib resistant B-cells, driven by the MYB-TYK2 fusion oncogene, were generated by long-term exposure to the drug. Sustained treatment of MYB-TYK2-rearranged ALL cells with cerdulatinib led to enhanced and persistent JAK/STAT signaling, co-occurring with JAK1 overexpression. Hyperactivation of JAK/STAT signaling and JAK1 overexpression was reversible as cerdulatinib withdrawal resulted in re-sensitization to the drug. Importantly, histone deacetylase inhibitor (HDACi) therapies were efficacious against cerdulatinib-resistant cells demonstrating a potential alternative therapy for use in TYK2-rearranged B-ALL patients who have lost response to JAKi treatment regimens.


Assuntos
Inibidores de Janus Quinases/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Fatores de Transcrição STAT/metabolismo , TYK2 Quinase/genética , Resistencia a Medicamentos Antineoplásicos , Rearranjo Gênico , Humanos , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Pirimidinas/farmacologia , Transdução de Sinais , Sulfonas/farmacologia , TYK2 Quinase/metabolismo
16.
J Biol Chem ; 296: 100773, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33984330

RESUMO

The human sliding clamp, Proliferating Cell Nuclear Antigen (hPCNA), interacts with over 200 proteins through a conserved binding motif, the PIP-box, to orchestrate DNA replication and repair. It is not clear how changes to the features of a PIP-box modulate protein binding and thus how they fine-tune downstream processes. Here, we present a systematic study of each position within the PIP-box to reveal how hPCNA-interacting peptides bind with drastically varied affinities. We synthesized a series of 27 peptides derived from the native protein p21 with small PIP-box modifications and another series of 19 peptides containing PIP-box binding motifs from other proteins. The hPCNA-binding affinity of all peptides, characterized as KD values determined by surface plasmon resonance, spanned a 4000-fold range, from 1.83 nM to 7.59 µM. The hPCNA-bound peptide structures determined by X-ray crystallography and modeled computationally revealed intermolecular and intramolecular interaction networks that correlate with high hPCNA affinity. These data informed rational design of three new PIP-box sequences, testing of which revealed the highest affinity hPCNA-binding partner to date, with a KD value of 1.12 nM, from a peptide with PIP-box QTRITEYF. This work showcases the sequence-specific nuances within the PIP-box that are responsible for high-affinity hPCNA binding, which underpins our understanding of how nature tunes hPCNA affinity to regulate DNA replication and repair processes. In addition, these insights will be useful to future design of hPCNA inhibitors.


Assuntos
Peptídeos/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Biblioteca de Peptídeos , Peptídeos/química , Antígeno Nuclear de Célula em Proliferação/química , Ligação Proteica , Mapas de Interação de Proteínas , Proteínas/química , Proteínas/metabolismo
17.
Bioorg Med Chem Lett ; 41: 128031, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33839250

RESUMO

The solvatochromic amino-acids 4-DMNA or 4-DAPA, were separately introduced at position 147, 150 or 151 of a short p21 peptide (141-155) known to bind sliding clamp protein PCNA. The ability of these peptides, 1a-3a and 1b-3b, to act as a turn-on fluorescent sensor for PCNA was then investigated. The 4-DMNA-containing peptides (1a-3a) displayed up to a 40-fold difference in fluorescence between a polar (Tris buffer) and a hydrophobic solvent (dioxane with 5 mM 18-crown-6), while the 4-DAPA-containing peptides (1b-3b) displayed a significantly enhanced (300-fold) increase in fluorescence from Tris buffer to dioxane with 18-crown-6. SPR analysis of the peptides against PCNA revealed that the 151-substituted peptides 3a and 3b interacted specifically with PCNA, with KD values of 921 nM and 1.28 µM, respectively. Analysis of the fluorescence of these peptides in the presence of increasing concentrations of PCNA revealed a 10-fold change in fluorescence for 3a at 2.5 equivalents of PCNA, compared to only a 3.5-fold change in fluorescence for 3b. Peptide 3a is an important lead for development of a PCNA-selective turn-on fluorescent sensor for application as a cell proliferation sensor to investigate diseases such as cancer.


Assuntos
Fluorescência , Corantes Fluorescentes/química , Peptídeos/química , Antígeno Nuclear de Célula em Proliferação/química , Corantes Fluorescentes/síntese química , Humanos , Estrutura Molecular , Peptídeos/síntese química , Espectrometria de Fluorescência
18.
Cell Mol Life Sci ; 78(8): 4035-4052, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33834258

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) is an important regulator of cellular metabolism that is commonly hyperactivated in cancer. Recent cancer genome screens have identified multiple mutations in Ras-homolog enriched in brain (Rheb), the primary activator of mTORC1 that might act as driver oncogenes by causing hyperactivation of mTORC1. Here, we show that a number of recurrently occurring Rheb mutants drive hyperactive mTORC1 signalling through differing levels of insensitivity to the primary inactivator of Rheb, tuberous sclerosis complex. We show that two activated mutants, Rheb-T23M and E40K, strongly drive increased cell growth, proliferation and anchorage-independent growth resulting in enhanced tumour growth in vivo. Proteomic analysis of cells expressing the mutations revealed, surprisingly, that these two mutants promote distinct oncogenic pathways with Rheb-T23M driving an increased rate of anaerobic glycolysis, while Rheb-E40K regulates the translation factor eEF2 and autophagy, likely through differential interactions with 5' AMP-activated protein kinase (AMPK) which modulate its activity. Our findings suggest that unique, personalized, combination therapies may be utilised to treat cancers according to which Rheb mutant they harbour.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias/genética , Mutação Puntual , Proteína Enriquecida em Homólogo de Ras do Encéfalo/genética , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Animais , Células HEK293 , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Células NIH 3T3 , Neoplasias/metabolismo , Proteoma/metabolismo , Proteômica , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Transdução de Sinais
19.
Anal Biochem ; 623: 114170, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33736971

RESUMO

Colorimetric methods are convenient for the determination of inorganic phosphate. However, the acidic conditions required can complicate measurement of ATPase through non-enzymatic ATP hydrolysis. Here we present an optimized antimony-phosphomolybdate microassay for the simple and rapid detection of ATPase activity, with micromolar sensitivity. The low acidity of the color reagent results in no interference for samples containing up to 0.5-5 mM ATP, dependent on the sample volume. The assay is compatible with common assay conditions and was similar in accuracy to an established continuous method. The simplicity of this method makes it ideal for medium to high throughput applications.


Assuntos
Adenosina Trifosfatases/análise , Adenosina Trifosfatases/química , Antimônio/química , Ensaios de Triagem em Larga Escala/métodos , Microquímica/métodos , Molibdênio/química , Fosfatos/análise , Ácidos Fosfóricos/química , Adenosina Trifosfatases/metabolismo , Colorimetria/métodos
20.
J Biol Chem ; 295(23): 7894-7904, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32335509

RESUMO

The ATP-grasp superfamily of enzymes shares an atypical nucleotide-binding site known as the ATP-grasp fold. These enzymes are involved in many biological pathways in all domains of life. One ATP-grasp enzyme, d-alanine-d-alanine ligase (Ddl), catalyzes ATP-dependent formation of the d-alanyl-d-alanine dipeptide essential for bacterial cell wall biosynthesis and is therefore an important antibiotic drug target. Ddl is activated by the monovalent cation (MVC) K+, but despite its clinical relevance and decades of research, how this activation occurs has not been elucidated. We demonstrate here that activating MVCs bind adjacent to the active site of Ddl from Thermus thermophilus and used a combined biochemical and structural approach to characterize MVC activation. We found that TtDdl is a type II MVC-activated enzyme, retaining activity in the absence of MVCs. However, the efficiency of TtDdl increased ∼20-fold in the presence of activating MVCs, and it was maximally activated by K+ and Rb+ ions. A strict dependence on ionic radius of the MVC was observed, with Li+ and Na+ providing little to no TtDdl activation. To understand the mechanism of MVC activation, we solved crystal structures of TtDdl representing distinct catalytic stages in complex with K+, Rb+, or Cs+ Comparison of these structures with apo TtDdl revealed no evident conformational change on MVC binding. Of note, the identified MVC binding site is structurally conserved within the ATP-grasp superfamily. We propose that MVCs activate Ddl by altering the charge distribution of its active site. These findings provide insight into the catalytic mechanism of ATP-grasp enzymes.


Assuntos
Trifosfato de Adenosina/metabolismo , Metais Alcalinos/metabolismo , Peptídeo Sintases/metabolismo , Trifosfato de Adenosina/química , Biocatálise , Cátions Monovalentes/química , Cátions Monovalentes/metabolismo , Metais Alcalinos/química , Modelos Moleculares , Peptídeo Sintases/química , Thermus thermophilus/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA