Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(24): 28503-28513, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34101414

RESUMO

Flexible metal-organic frameworks (MOFs) are promising materials in gas-related technologies. Adjusting the material to processes requires understanding of the flexibility mechanism and its influence on the adsorption properties. Herein, we present the mechanistic understanding of CO2-induced pore-opening transitions of the water-stable MOF JUK-8 ([Zn(oba)(pip)]n, oba2- = 4,4'-oxybis(benzenedicarboxylate), pip = 4-pyridyl-functionalized benzene-1,3-dicarbohydrazide) as well as its potential applicability in gas purification. Detailed insights into the global structural transformation and subtle local MOF-adsorbate interactions are obtained by three in situ techniques (XRD, IR, and 13CO2-NMR). These results are further supported by single-crystal X-ray diffraction (SC-XRD) analysis of the solvated and guest-free phases. High selectivity toward carbon dioxide derived from the single-gas adsorption experiments of CO2 (195 and 298 K), Ar (84 K), O2 (90 K), N2 (77 K), and CH4 (298 K) is confirmed by high-pressure coadsorption experiments of the CO2/CH4 (75:25 v/v) mixture at different temperatures (288, 293, and 298 K) and in situ NMR studies of the coadsorption of 13CO2/13CH4 (50:50 v/v; 195 K).

2.
Dalton Trans ; 50(23): 7933-7937, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34075989

RESUMO

An aliovalent mixed-metal framework DUT-174 [LiAl(2-methylimidazolate)4]n, isostructural to ZIF-8, was synthesized from lithium aluminum hydride (LiAlH4) and 2-methylimidazole (2-mImH) through dehydrogenation. Lithium and aluminum cations acting as alternating framework nodes are coordinated tetrahedrally by (2-mIm)-. DUT-174 has a high specific surface area of 1149 m2 g-1 and CO2 uptake of 11.57 mmol g-1 at 195 K.

3.
Chem Mater ; 32(11): 4641-4650, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32550744

RESUMO

The origin of crystal-size-dependent adsorption behavior of flexible metal-organic frameworks is increasingly studied. In this contribution, we probe the solid-fluid interactions of DUT-49 crystals of different size by in situ 129Xe NMR spectroscopy at 200 K. With decreasing size of the crystals, the average solid-fluid interactions are found to decrease reflected by a decrease in chemical shift of adsorbed xenon from 230 to 200 ppm, explaining the lack of adsorption-induced transitions for smaller crystals. However, recent studies propose that these results can also originate from the presence of lattice defects. To investigate the influence of defects on the adsorption behavior of DUT-49, we synthesized a series of samples with tailored defect concentrations and characterized them by in situ 129Xe NMR. In comparison to the results obtained for crystals with different size, we find pronounced changes of the adsorption behavior and influence of the chemical shift only for very high concentrations of defects, which further emphasizes the important role of particle size phenomena.

4.
Nat Commun ; 10(1): 3632, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406113

RESUMO

Switchable metal-organic frameworks (MOFs) have been proposed for various energy-related storage and separation applications, but the mechanistic understanding of adsorption-induced switching transitions is still at an early stage. Here we report critical design criteria for negative gas adsorption (NGA), a counterintuitive feature of pressure amplifying materials, hitherto uniquely observed in a highly porous framework compound (DUT-49). These criteria are derived by analysing the physical effects of micromechanics, pore size, interpenetration, adsorption enthalpies, and the pore filling mechanism using advanced in situ X-ray and neutron diffraction, NMR spectroscopy, and calorimetric techniques parallelised to adsorption for a series of six isoreticular networks. Aided by computational modelling, we identify DUT-50 as a new pressure amplifying material featuring distinct NGA transitions upon methane and argon adsorption. In situ neutron diffraction analysis of the methane (CD4) adsorption sites at 111 K supported by grand canonical Monte Carlo simulations reveals a sudden population of the largest mesopore to be the critical filling step initiating structural contraction and NGA. In contrast, interpenetration leads to framework stiffening and specific pore volume reduction, both factors effectively suppressing NGA transitions.

5.
Chemistry ; 25(26): 6562-6568, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30900781

RESUMO

Cyano-substituted polyphenylene vinylenes (PPVs) have been the focus of research for several decades owing to their interesting optoelectronic properties and potential applications in organic electronics. With the advent of organic two-dimensional (2D) crystals, the question arose as to how the chemical and optoelectronic advantages of PPVs evolve in 2D compared with their linear counterparts. In this work, we present the efficient synthesis of two novel 2D fully sp2 -carbon-linked crystalline PPVs and investigate the essentiality of inorganic bases for their catalytic formation. Notably, among all bases screened, cesium carbonate (Cs2 CO3 ) plays a crucial role and enables reversibility in the first step with subsequent structure locking by formation of a C=C double bond to maintain crystallinity, which is supported by density functional theory (DFT) calculations. A quantifiable energy diagram of a "quasi-reversible reaction" is proposed, which allows the identification of further suitable C-C bond formation reactions for 2D polymerizations. Moreover, the narrowing of the HOMO-LUMO gap is delineated by expanding the conjugation into two dimensions. To enable environmentally benign processing, the post-modification of 2D PPVs is further performed, which renders stable dispersions in the aqueous phase.

6.
J Am Chem Soc ; 140(32): 10191-10197, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30024754

RESUMO

One of the main problems of gas storage in porous materials is that many molecules of interest adsorb too weakly to be retained effectively. To enhance gas storage in metal-organic frameworks (MOFs), we propose the use of kinetic trapping, i.e., a process where the guest gas is captured in the voids at loading conditions and not released immediately at normal conditions. In this approach, the diffusion-limiting pore size and the framework flexibility have to be matched to the gas, requiring flexible pore apertures to be smaller than the van der Waals diameter of the trapped guest. We selected the Metal-Organic Framework Ulm University-4 (MFU-4) with a pore aperture of 2.52 Å as a model coordination framework and used it for storage of xenon (with van der Waals diameter of 4.4 Å). Although xenon atoms are substantially larger than the MOF pore aperture, MFU-4 could be loaded with xenon by applying moderately high gas pressures. This is demonstrated to be due to the pore flexibility as confirmed by computational studies. The xenon loading could be tuned (from 0 wt % to more than 44.5 wt %) by changing the loading parameters such as pressure, temperature, and time, and the xenon atoms remained inside the pores upon exposing the material to air atmosphere at room temperature. To understand the material behavior, TGA, XRPD, and 129Xe NMR spectroscopy and computational studies were carried out.

7.
Biometals ; 30(1): 71-82, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28064420

RESUMO

Iron incorporation into diatom biosilica was investigated for the species Stephanopyxis turris. It is known that several "foreign" elements (e.g., germanium, titanium, aluminum, zinc, iron) can be incorporated into the siliceous cell walls of diatoms in addition to silicon dioxide (SiO2). In order to examine the amount and form of iron incorporation, the iron content in the growth medium was varied during cultivation. Fe:Si ratios of isolated cell walls were measured by ICP-OES. SEM studies were performed to examine of a possible influence of excess iron during diatom growth upon cell wall formation. The chemical state of biosilica-attached iron was characterized by a combination of infrared, 29Si MAS NMR, and EPR spectroscopy. For comparison, synthetic silicagels of variable iron content were studied. Our investigations show that iron incorporation in biosilica is limited. More than 95% of biosilica-attached iron is found in the form of iron clusters/nanoparticles. In contrast, iron is preferentially dispersedly incorporated within the silica framework in synthetic silicagels leading to Si-O-Fe bond formation.


Assuntos
Parede Celular/química , Diatomáceas/química , Ferro/química , Dióxido de Silício/química , Meios de Cultura , Espectroscopia de Ressonância Magnética , Nanopartículas/química , Titânio/química
8.
Structure ; 24(7): 1178-91, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27320836

RESUMO

Diatoms are eukaryotic unicellular algae characterized by silica cell walls and associated with three unique protein families, the pleuralins, frustulins, and silaffins. The NMR structure of the PSCD4 domain of pleuralin-1 from Cylindrotheca fusiformis contains only three short helical elements and is stabilized by five unique disulfide bridges. PSCD4 contains two binding sites for Ca(2+) ions with millimolar affinity. NMR-based interaction studies show an interaction of the domain with native silaffin-1A as well as with α-frustulins. The interaction sites of the two proteins mapped on the PSCD4 structure are contiguous and show only a small overlap. A plausible functional role of pleuralin could be to bind simultaneously silaffin-1A located inside the cell wall and α-frustulin coating the cell wall, thus connecting the interfaces between hypotheca and epitheca at the girdle bands. Restrained molecular dynamics calculations suggest a bead-chain-like structure of the central part of pleuralin-1.


Assuntos
Parede Celular/química , Diatomáceas/química , Peptídeos/química , Dióxido de Silício/metabolismo , Cálcio/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Ligação Proteica , Domínios Proteicos
10.
J Phys Chem B ; 111(10): 2752-7, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17315921

RESUMO

Liquid-state 31P NMR spectroscopy is a well-established method for the study of guanine nucleotide-binding proteins (GNB proteins) such as the proto-oncogene Ras. Solid-state 31P NMR spectroscopy could meanwhile also be used to study microcrystalline samples of Ras as well as its partial loss-of-function mutants Ras(T35S) and Ras(T35A). However, solid-state NMR studies of the latter mutants in complex with effector molecules such as RalGDS or Raf kinase were so far prevented, since it has been impossible to crystallize these complexes yet. The aim of the present contribution is to make such complexes accessible to solid-state 31P NMR spectroscopy by the application of precipitation methods. The complex formed by Ras(T35S) and Raf kinase is preserved during precipitation. In contrast, the weakly bound complex of Ras(T35S) with RalGDS is dissociated or at least perturbed by the precipitation procedure. Solid-state 31P NMR experiments on precipitates of these complexes deliver spectra of high resolution and signal-to-noise ratio which allows the application of two-dimensional techniques. Precipitates prepared using polyethylene glycol 6000 (PEG) as precipitant were found to exhibit spectra of maximum resolution and signal-to-noise ratio. Interestingly, the 31P signal due to the alpha-phosphate of GppNHp bound to Ras(T35S) in crystalline samples or aged precipitates has a significantly different isotropic chemical shift than in the liquid state or in freshly prepared precipitates. This directly indicates that the crystal structure differs from the equilibrium solution structure at least in the neighborhood of the alpha-phosphate group.


Assuntos
Nucleotídeos de Guanina/química , Quinases raf/química , Fator ral de Troca do Nucleotídeo Guanina/química , Proteínas ras/química , Mutação , Ressonância Magnética Nuclear Biomolecular , Polietilenoglicóis , Ligação Proteica , Proteínas ras/genética
11.
J Phys Chem B ; 109(38): 17795-8, 2005 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16853281

RESUMO

Xenon binding into preexisting cavities in proteins is a well-known phenomenon. Here we investigate the interaction of helium, neon, and argon with hydrophobic cavities in proteins by NMR spectroscopy. 1H and 15N chemical shifts of the I14A mutant of the histidine-containing phosphocarrier protein (HPr(I14A)) from Staphylococcus carnosus are analyzed by chemical shift mapping. Total noble gas induced chemical shifts, Delta, are calculated and compared with the corresponding values obtained using xenon as a probe atom. This comparison reveals that the same cavity is detected with both argon and xenon. Measurements using the smaller noble gases helium and neon as probe atoms do not result in comparable effects. The dependence of amide proton and nitrogen chemical shifts on the argon concentration is investigated in the range from 10 mM up to 158 mM. The average dissociation constant for argon binding into the engineered cavity is determined to be about 90 mM.


Assuntos
Proteínas de Bactérias/química , Gases Nobres/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Staphylococcus/química , Aminoácidos/química , Argônio/química , Cinética , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Proteica , Software
12.
Science ; 298(5593): 584-6, 2002 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-12386330

RESUMO

Silaffins are uniquely modified peptides that have been implicated in the biogenesis of diatom biosilica. A method that avoids the harsh anhydrous hydrogen fluoride treatment commonly used to dissolve biosilica allows the extraction of silaffins in their native state. The native silaffins carry further posttranslational modifications in addition to their polyamine moieties. Each serine residue was phosphorylated, and this high level of phosphorylation is essential for biological activity. The zwitterionic structure of native silaffins enables the formation of supramolecular assemblies. Time-resolved analysis of silica morphogenesis in vitro detected a plastic silaffin-silica phase, which may represent a building material for diatom biosilica.


Assuntos
Diatomáceas/química , Proteínas/química , Proteínas/isolamento & purificação , Dióxido de Silício/química , Parede Celular/química , Parede Celular/metabolismo , Precipitação Química , Cromatografia Líquida de Alta Pressão , Diatomáceas/metabolismo , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Peso Molecular , Morfogênese , Tamanho da Partícula , Peptídeos , Fosfatos/química , Fósforo/análise , Fosforilação , Fosfosserina/química , Poliaminas/química , Proteínas/metabolismo , Dióxido de Silício/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA