Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34626791

RESUMO

Macrophages are professional phagocytes, indispensable for maintenance of tissue homeostasis and integrity. Depending on their resident tissue, macrophages are exposed to highly diverse metabolic environments. Adapted to their niche, they can contribute to local metabolic turnover through metabolite uptake, conversion, storage and release. Disturbances in tissue homeostasis caused by infection, inflammation or damage dramatically alter the local milieu, impacting macrophage activation status and metabolism. In the case of persisting stimuli, defective macrophage responses ensue, which can promote tissue damage and disease. Especially relevant herein are disbalances in lipid rich environments, where macrophages are crucially involved in lipid uptake and turnover, preventing lipotoxicity. Lipid uptake is to a large extent facilitated by macrophage expressed scavenger receptors that are dynamically regulated and important in many metabolic diseases. Here, we review the receptors mediating lipid uptake and summarize recent findings on their role in health and disease. We further highlight the underlying pathways driving macrophage lipid acquisition and their impact on myeloid metabolic remodelling.


Assuntos
Inflamação/genética , Lipídeos/genética , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Transporte Biológico/genética , Homeostase/genética , Humanos , Inflamação/metabolismo , Inflamação/patologia
2.
Diabetes ; 70(9): 2042-2057, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33627323

RESUMO

Obesity-induced white adipose tissue (WAT) hypertrophy is associated with elevated adipose tissue macrophage (ATM) content. Overexpression of the triggering receptor expressed on myeloid cells 2 (TREM2) reportedly increases adiposity, worsening health. Paradoxically, using insulin resistance, elevated fat mass, and hypercholesterolemia as hallmarks of unhealthy obesity, a recent report demonstrated that ATM-expressed TREM2 promoted health. Here, we identified that in mice, TREM2 deficiency aggravated diet-induced insulin resistance and hepatic steatosis independently of fat and cholesterol levels. Metabolomics linked TREM2 deficiency with elevated obesity-instigated serum ceramides that correlated with impaired insulin sensitivity. Remarkably, while inhibiting ceramide synthesis exerted no influences on TREM2-dependent ATM remodeling, inflammation, or lipid load, it restored insulin tolerance, reversing adipose hypertrophy and secondary hepatic steatosis of TREM2-deficient animals. Bone marrow transplantation experiments revealed unremarkable influences of immune cell-expressed TREM2 on health, instead demonstrating that WAT-intrinsic mechanisms impinging on sphingolipid metabolism dominate in the systemic protective effects of TREM2 on metabolic health.


Assuntos
Tecido Adiposo/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Obesidade/metabolismo , Receptores Imunológicos/metabolismo , Animais , Dieta Hiperlipídica , Inflamação/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Camundongos , Regulação para Cima
3.
Front Immunol ; 10: 2002, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497027

RESUMO

Class 1 Phosphoinositide-3-Kinases (PI3Ks) have been widely studied and mediate essential roles in cellular proliferation, chemotaxis, insulin sensitivity, and immunity. Here, we provide a comprehensive overview of how macrophage expressed PI3Ks and their downstream pathways orchestrate responses to metabolic stimuli and nutrients, polarizing macrophages, shaping their cellular identity and function. Particular emphasis will be given to adipose tissue macrophages, crucial players of insulin resistance and chronic metabolically triggered inflammation during obesity. An understanding of PI3K dependent wiring of macrophage responses is important as this is involved in various diseases ranging from obesity, type 2 diabetes to chronic inflammatory disease.


Assuntos
Macrófagos/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Tecido Adiposo/imunologia , Animais , Sobrevivência Celular , Glucose/metabolismo , Humanos , Insulina/metabolismo , Metabolismo dos Lipídeos , Ativação de Macrófagos , Células Mieloides/metabolismo , Obesidade/imunologia
4.
Sci Rep ; 6: 23034, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26971883

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease with limited treatment options. Additionally, the lack of a complete understanding of underlying immunological mechanisms underscores the importance of discovering novel options for therapeutic intervention. Since the PI3K/PTEN pathway in myeloid cells influences their effector functions, we wanted to elucidate how sustained PI3K activity induced by cell-type specific genetic deficiency of its antagonist PTEN modulates IPF, in a murine model of bleomycin-induced pulmonary fibrosis (BIPF). We found that myeloid PTEN deficient mice (PTEN(MyKO)), after induction of BIPF, exhibit increased TGF-ß1 activation, mRNA expression of pro-collagens and lysyl oxidase as well as augmented collagen deposition compared to wild-type littermates, leading to enhanced morbidity and decreased survival. Analysis of alveolar lavage and lung cell composition revealed that PTEN(MyKO) mice exhibit reduced numbers of macrophages and T-cells in response to bleomycin, indicating an impaired recruitment function. Interestingly, we found dysregulated macrophage polarization as well as elevated expression and release of the pro-fibrotic cytokines IL-6 and TNF-α in PTEN(MyKO) mice during BIPF. This might point to an uncontrolled wound healing response in which the inflammatory as well as tissue repair mechanisms proceed in parallel, thereby preventing resolution and at the same time promoting extensive fibrosis.


Assuntos
Citocinas/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Mediadores da Inflamação/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Animais , Bleomicina , Western Blotting , Colágeno/genética , Colágeno/metabolismo , Ativação Enzimática , Feminino , Expressão Gênica , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Macrófagos/classificação , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/metabolismo , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA